هواية الصواريخ
من النظرية الى التطبيق
محمد العوني
هواية الصواريخ
من النظرية إلى التطبيق
محمد العوني
2009
الهوية الصاروخ

الفهرس

الفصل الأول : قصة مع الصواريخ

<table>
<thead>
<tr>
<th>الصفحة</th>
<th>فصل</th>
<th>الورقة</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>الفصل 1.1</td>
<td>التمثيلات الطفولية</td>
</tr>
<tr>
<td>6</td>
<td>الفصل 1.2</td>
<td>مرحلة البحث</td>
</tr>
<tr>
<td>8</td>
<td>الفصل 1.4</td>
<td>البحث عن الكنز</td>
</tr>
<tr>
<td>13</td>
<td>الفصل 1.4</td>
<td>الاكتشافات</td>
</tr>
<tr>
<td>17</td>
<td>الفصل 1.5</td>
<td>تجربة بالصدفة</td>
</tr>
<tr>
<td>20</td>
<td>الفصل 1.6</td>
<td>المقلة</td>
</tr>
<tr>
<td>22</td>
<td>الفصل 1.7</td>
<td>محاولة التجربة الأولى</td>
</tr>
<tr>
<td>23</td>
<td>الفصل 1.8</td>
<td>المحاولة الثانية { أول تجربة</td>
</tr>
<tr>
<td>26</td>
<td>الفصل 1.9</td>
<td>التجربة الثانية</td>
</tr>
<tr>
<td>29</td>
<td>الفصل 10.1</td>
<td>التجربة الثالثة</td>
</tr>
<tr>
<td>33</td>
<td>الفصل 11.1</td>
<td>بناء جسم الصاروخ</td>
</tr>
<tr>
<td>34</td>
<td>الفصل 12.1</td>
<td>التجربة الرابعة</td>
</tr>
<tr>
<td>47</td>
<td>الفصل 13.1</td>
<td>التجربة الخامسة</td>
</tr>
<tr>
<td>53</td>
<td>الفصل 14.1</td>
<td>صناعة صاروخ الفرناس 1</td>
</tr>
<tr>
<td>58</td>
<td>الفصل 15.1</td>
<td>الانطلاق إلى الاطلاق</td>
</tr>
</tbody>
</table>

الفصل الثاني : التواريخ في استعمال الصواريخ

<table>
<thead>
<tr>
<th>الصفحة</th>
<th>فصل</th>
<th>الورقة</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>الفصل 1.2</td>
<td>اركيطاس دو تارانت</td>
</tr>
<tr>
<td>68</td>
<td>الفصل 2.2</td>
<td>هيرون السكندري</td>
</tr>
<tr>
<td>69</td>
<td>الفصل 3.2</td>
<td>الصينيون</td>
</tr>
<tr>
<td>70</td>
<td>الفصل 4.2</td>
<td>العرب</td>
</tr>
<tr>
<td>70</td>
<td>الفصل 1.4.2</td>
<td>استعمال البارود</td>
</tr>
<tr>
<td>72</td>
<td>الفصل 2.4.2</td>
<td>استخدام النار الإغريقية</td>
</tr>
<tr>
<td>73</td>
<td>الفصل 5.2</td>
<td>القرون الوسطى</td>
</tr>
<tr>
<td>75</td>
<td>الفصل 6.2</td>
<td>الصواريخ خلال القرن العشرين</td>
</tr>
<tr>
<td>76</td>
<td>الفصل 1.6.2</td>
<td>قسطنطين تسولوكوفسكي</td>
</tr>
<tr>
<td>76</td>
<td>الفصل 1.1.6.2</td>
<td>حياته</td>
</tr>
</tbody>
</table>
الفصل الأول

قصتي مع الصواريخ

1. قصتي مع الصواريخ
1.1 التمثيلات الطفولية

أسرد لكم عبر هذه الورقات تجربتي المتواضعة في علم من العلوم لا يزال حكرا على الكبار، أو سأحاول إن أعطي تفسيرا أو "شرح"، من مرحلة الطفولة، لعمل أقوم بها في سن الرشد، هو نوع من البناء على أساس صحيح أو " صادق " بتعبير أصح، هو نوع من الوفاء بالوعد لذلك الطفل الصغير الذي كان يغمغم بكلام غير مفهوم بين صخور جبال كان يعتقد أنها كل العالم، مخاطباً احلاماً كانت كبيرة عليه و فوق طاقته.

إبان طفولتي، لازلت أذكر ذلك الانجذاب الذي كان يتملكني حالماً أرى شيئاً ما محلقاً في جو السماء، طيرا كان، أو طائرات، كانت الطائرات العسكرية تمر محلة بأزيزها المدوي في منطقتنا الجبلية، اذكر كيف كنت أركض ملاحقاً إياها، بكثير من الصياح، عيناي لا تفارقها و أقدامي على الأرض لا تلوي ما تطأ عليه حتى تخلفي هذه الطائرات في الأفق، عندها أعثرت باستراحة الأفاس مع احساس بخيبة امل مشوبة بالدهشة و الكثير من الهرفة من هذه الطيور الهائلة التي مرت من هنا سرعة و هي لا تلوي على شيء عندما أرجع إلى البيت غالباً ما كنت اجد من يعلق ساخراً "هل مسكت الطائرة يا محمد..؟؟".

هذا الانجذاب الطفولي الفطري، نحو هذه المسالة أو تلك، هو الذي يحدد مصير الإنسان، أيها السادة، عند بلوغه سن الرشد، اما أن يكون او لا يكون، يكون عالماً عبقرياً أو مختراها لامعاً أو فناناً مبدعاً أو كاتباً ملهماً أو شاعراً مجيداً، او لا يكون شيئاً بالمرة، يمتد هذا الانجذاب أو هذا الحب عبر سنوات العمر ليعطي الحياة كلها، اما جوادة متعاطاً إذا توقفت الوسائل و صلحت التربة و المناخ الاجتماعي، و تعهد بالرعاية و الاعتناء عبر مختلف المراحل، أو مرتكساً ضامراً إذا انعدمت هذه الوسائل و ترك هواية الصواريخ
للاهمال و كانت البيئة الاجتماعية مشلولة بسياحة فكر الانحطاط و جمود التقليد و غياب التجديد. يتمظهر هذا الحب أو الانجذاب حسب مراحل العمر التي يمر منها حامل هذه الشعلة الفكرية الغالية في مرحلة التمدرس الأولى قد يتفاعل بشكل ملفت مع مقررات الدراسة، و ما يتناوله المعلم في القسم، أو قد لا يجد في نفسه في ما يدرس له، و تراه تلميذًا مثيرًا غريب الأطوار بالكاد يحوز نقطة تحوله الانتقال إلى الصف الموالي، و لا أذكر أنني كنت من هذا الصنف.

لما سرت يافعا كنت لا اتردد في اقتناء كتاب أو مجلة اراه يتناول هذه المسألة و لا زلت أنكر ذلك كيف كنت انتهى بخشوع في قسم الفيزياء عندما يكون الدرس حول الفضاء و الجاذبية الأرضية و قوانينها و كيف كنت أجن، ولا زلت، هؤلاء الرجال الأفذاذ أمثال ابن الفرنس و كوبيرنيك و غاليلو و نيوتن الذين فهموا لغز الفضاء و قوانينه و غيرهم كثير....

لا أذكر مرة أخرى، أنني تأثرت كثيرا بما كنت أقرأ في المجلات و الكتب و الجرائد بأفكار و أعمال علماء أفذاذ أمثال توماس أديسون، و البيروني و غيرهم و هذا التأثر جعلني اؤمن بأن العمل الجاد هو الفيصل بين أن تكون مع هؤلاء أو لا تكون، الحب و التقدير غير كافيان لتنتمي في سلك العلماء و المخترعين، أين البرهان؟ ماذا قدمت بجوار ما قدموا؟ بل لابكفي ان تقدم شيئا هكذا كيفما اتفق حتى تخال نفسك منهم، بل لابد أن يكون لتاثير عملك وانجازك نفس اثر أعمالهم وانجازاتهم، هم سبقوك نعم، و أنجزوا أشياء تبدو لك اليوم من البديهيات، ولكنهم كانت لهم تلك الفكرة الثاقبة التي اخترقت حجب المجهول ورجعت محملة بأفكار و اختراعات مذهلة.
2.1 مرحلة البحث

ظهور الإنترنت أعطى للباحث عن المعرفة والمعلومات امكانية هائلة في العثور على مبتعث في رمثة عين، وبكميات كبيرة جدا، في بعض الاحيان قد تتجاوز الملايين من المصادر، بدأت في البحث ذات ليلة عبر الإنترنت في مواضيع ذات صلة بالصواريخ وكأن محسن الصدف ان محرك البحث ارشديني الى موقع باللغة الإنجليزية لأحد المهندسين الكنديين المتخصصين في الصواريخ و يتعلق الأمر ب:

Richard NAKKA (1)

ذي شهرة عالمية لدي هواة الصواريخ بحيث لا يخلو منتدي من منتدياتهم من ذكره واستشهادة بأعماله في هذا المجال، و تلقت كانت البداية ، دخلت موقعه و ذهلت من كثرة المعلومات و دقتها و مجانيتها حيث ذكر انه أطلق أول صاروخ له في بداية السبعينات ، و عرفت ان الرجل عريق الخبرة في مجال تخصصه لم أتردد في الاتصال به و كم كان ردنا مفرحًا بالنسبة لي ، منذ تلك اللحظة امتدت صداقته كبيرة عبر ضفتي المحيط الأطلسي لم تزدها الأيام الا عمقا و متأثرة و كان قد نصحني بالاطلاع الكافي على كل ما تقع عليه عيناي من مواقع و كتب الالكترونيون في مجال الصواريخ و صرت اطلع و انسخ على الأوراق كل ما كانت تجود به محركات البحث من كتب و مقالات و مع مرور الوقت تجمع لدى كمية لا باس بها من الوثائق و الكتب بمختلف اللغات : العربية و الفرنسية والإنجليزية،

(1)http://www.nakka-rocketry.net

و كان من أهم ما نسخت رسالته لنيل دبلوم البكالوريوس في الهندسة الميكانيكية من جامعة مانيتوبا كندا عام 1984 ، و كان موضوعها باللغة الإنجليزية "المعركات الصاروخية الصلبة ، تصنيع و اختبار" {1}.
مررت بسرعة وحماس إلى الناحية العملية، وكان أول شيء قمت بتصنيعه هو المحرك، مستعيناً بالمقادير والقياسات التي جاءت في الرسالة، حيث عمدت إلى آلية لضخ الشحم اليدوية في مفاصل الشاحنات والسيارات وهي عبارة عن أنبوب جيد التصنيع ويمكن فتحه من الجهتين، وذو ابعاد مناسبة ومطابق بالصدفة لابعاد المحركات التي تصنع وفق مقاييس مدروسة والمهيأة بعناية.

قلت حملته إلى أقرب لحام و

هناك قمت بلهام القطع المخروطية معدة سلفا كل واحدة في مكانها و بالدقة المطلوبة. وفي الأخير كان أول محرك صاروخي جاهزا للعمل.

واذا، قد سميته "الوهاج-1"، لأنه قد لاحظت أنه من عادة مصممي المحركات الصاروخية تسمية ما يصنعونه من محركات كل حسب رغبته وتمينا بيمنه الخاص به. وهذا لا يمنع أن يكون هناك ترتيب عالمي موحد للمحركات حسب قوة الدفع التي ينتجها كل المحرك، كانت أول خطة لكنها كانت مشوهة بالكثير من القلق حول امكانية النجاح. أذكر أن إعداد المحرك بدون توفر على مواد كيميائية لتصنيع الوقود الصلب، أو الجاف، هي مجرد تمرين في التلحيم والحدادة لا غير. و هنا بدأت ملحمة أخرى من البحث لا تقل أهمية عن الأخرى في مجال الكيمياء. هذه المرة ليس عبر الشبكة ولكن عبر متاجر المدينة. أذ ان موقع السيد ريتشارد ناكا كان قد حسم الأمر من الناحية المعرفية وصرت عارفا ما ابحث عنه بالتمام، يتعلق الأمر بتنزيل البوتاسيوم، و في حقيقة الأمر، كنت أبحث أيضا في مواقع المتخصصة في الكيمياء و كنت اجري التجارب على بعض المواد التي كانت متاحة.

هواية الصواريخ
في المحلات التجارية في المدينة و كنت اقتنيتها لمجرد الاستئناس بها و خلق امل و لو و هي في الحصول على المادة نترات البوتاسيوم، و لاحظت ان لكل مادة اسم تجاري و اخر علمي و ان كنت سى الحظ مثلى و ذهبت لتطلبها باسمها العلمي، من المحل التجاري فانك لن تجني الال غبار من صاحب المحل، فمثلا حامض الكليوريديك يعرف تجارياً "بالهاء القاطع" و نترات الأمونيوم يعرف "بملح 33" فينول الفتايل يسمى " بالكالور" و غاز استيتين يعرف بالكاربي و الاسيتون يعرف كذلك بالديليو وهي كلمة فرنسية تعني المذيب الخ...

في غرفتي بدات القنينات و الأواني و الأكياس السوداء تزاحم الأجهزة الإلكترونية و الكتب و كنت أمضى الساعات في التسخين و التقطير و التذوب و التبخير، و يمكن أن اقول انى صرت جابيري الصناعة(1) وخصوصا عندما تمكنت من تركيب حامض النتريك بطريقة بسيطة، هذا الحمض الذي كان يحار بسرقة المشدودة في مختبرات المدارس و الصيدليات بدعوى أنه مادة شديدة الخطورة من حيث أنه يستعمل مثلا في التطبيقات الذرية لفصل اليورانيوم عن البلتنيوم و لذلك يمنع استعماله من قبل العوام.

3.1 البحث عن الكنز

أما نترات البوتاسيوم فقد كنت قرأت مما قرأت أنها تستخلص من الأتربة المتواجدة في البيوت المهدمة و وروث المعز وهي تلك المادة البيضاء التي تظهر على الجدران التي نكتشها الرطوبة. عزمت ذات مساء على خوض تجربة الاستخلاص بغض النظر عن الكمية المحصلة عليها و أحضرت كمية من التراب و عملت إلى تسخين كمية من الماء و إحضار الألواح اللازمة ثم صببت الماء الساخن على التراب من فوق لكي يتسرب الماء الساخن من تحت و هو محل الجزيئات المذابة هذه المادة ليستقر في انية على شكل حوض و بعد تسخيف الماء من الشوائب عن طريق الترسب أضافت إليه كمية من الكحول، و بالفعل تشكلت حبيبات بيضاء صغيرة.
لنترات البوتاسيوم و لكن بكمية قليلة جعلتني اعدل عن الطريقة هذه لأنها غير اقتصادية و شاقة من حيث نقل التراب ثم التخلص منه الخ...

و قررت ان ابحث عنها في المولات التجارية للمدينة وقد سالت ذات يوم أحد التجار المتخصص في بيع المواد الفلاحية وقال انها موجودة و تباع في كيس من فئة 50 كيلو و ثمن الكيس الواحد مئتي درهم، ترددت كثيرا لأنني لم استطيع نفي الشكوك حول المكونات الحقيقية لهذا الكيس الذي يقول صاحب المحل انها نترات البوتاسيوم، بعد أسبوع عدت اليه و اعطيته الثمن "مئتي درهم" و حملته على الدراجة متجها الى المنزل و لما وصلت وضعت الكيس في مكان امن و فتحته، و اول شيء لاحظته ان الملح متسخ و كان خليط بالتراب وهو عكس ما اشادته من صور لنترات البوتاسيوم التي تكون بيضاء شديدة البياض، قمت بخلط كمية منه مع كمية من السكر و حاولت حرقه لم يحترق، و تيقنت ان الورقة النقدية الزرقاء التي اعطيتها للتاجر قد ذهبت سدى، تملكني شعور بالاحباط و الياس و خصوصا لما افكر فيما يمكن اقتنائه من ذلك الثمن من مصاريف يومية نحن في حاجة إليها، بقي ذلك الكيس ين جاه موسم الحبوب و اخذته الى المنزل لنا في البادية و هناك نثرته مع حبات القمح المزروعة.

وبعدها قررت البحث في المدن المجاروة و لازلت اذكر كيف كنت اقضي يوما كاملا سيرا على الأقدام متنقلا من حي الى حي ومن متجر فلاحى الى اخر سواء في وحدة أو بركان أو النظر و اعود في النهار الى العيون منتهك القوى، محبط المشاعر، متورم الأقدام و جوع الحبوب قد سرت على هذا الحال مدة من الزمن و كنت دائما اتساءل اذ انني من غير الممكن و المعقول ان تكون دولة عريقة مثل المغرب لا توجد فيها مادة كان اجادنا يعرفوها و يستعملونها منذ قرون.

و ذات يوم عمدت الى دليل الشركات (الصفحات الصفراء) و وقت بجرد العناوين الالكترونية للمراكز و الشركات و الصيدليات.
المتخصصة في بيع الكيماويات وبدأت في مراسلة العشرات منها بشكل يومي ووفي واقع الأمر لم أكن أتوقع بالأجوبة منها إلا القليل منها و التي تنفي توفرها على النترات ، وذات مساء توصلت بجواب من أحد الصيادلة من الناظور، فمنا ابحث عنه موجود ولكن يباع على شكل كيسين من فئة 25 كليغ، استفسرني حول الهدف من البحث عن نترات البوتاسيوم وقتلنتًا بالماء، وكانت هذه التقنية تعرف انتشارًا واسعًا بترويج من برنامج صناع الحياة يومًا، و هي تقنية تضاف فيها نترات البوتاسيوم وأمال أخرى بشكل مباشر في الماء لتعويض الأملاح المتواجدة في التربة لنمو الخضروات بشكل سليم.

المهم تطورت الاتصالات بيننا، وفي حقيقة الأمر كنت متجسًا بعض الشئ، ودلت على اسم وعنوان المحل الذي يوفرها، ذات فجر (منتصف رمضان 2007) انطلاقت إلى الناظور وبعد جهد من البحث وجدت المحل ولكن بدون نترات اذ أكد لي صاحب المحل ان هذه المادة نفذت وستكون متوفرة في أقرب وقت ممكن، رجعت وانا في قمة الأحباط وتأكد لي ان حلم تصنيع صاروخ و إطلاقه لن يتحقق أبدا، و الشيء الوحيد الذي كنت أواصله به نفسي هو أنني عرفت على الأقل المتجر ألفلاحي الوحيد الذي يوفر هذه المادة في الشرق كله وارادة في معاداة الكرة وابل في تحقيق المراد، بعد أسبوع رجعت وكلما اقتربت من المتجر الا وازدت توترنا وقلقنا، كانت تنتابني مشاعر متناقضية: خوف وثقة، يأس وأمل، دخلت و كانت وقت الصباح، و كان هناك فتيان يتحدثان الريفية سأبت عن نترات البوتاسيوم هل توجد قال نعم و سألته عن بضعة كليغرامات قال ان أقل كمية يمكن بيعها هي كيس من 25 كليغ، المهم اشتريت الكيس کله و خرجت من المتجر إلى الطريق وانا محظون لكيس أبيض وضحاء، تنبعث منه رائحة نفاذا كنت استنشقتها بشغف وانا لا أصدق نفسي أحسست ان خفيف الوزن من شدة الفرح، ركبت ورجعت إلى المنزل، كانت وقت الظهيرة، دخلت إلى مهرولا إلى الغرفة
المختبر وانا لا الوي على شئ ، فتحت الكيس وجدتها مادة بيضاء شديدة النقاوة ، أخذت شيئا وذقته باللسان ، مذاقها غريب و سريعة الذوبان ، أخذت منها حجم ملعقة و ملعقة أخرى من مسحوق السكر ، مزجتهما جيدا ، وأشعلت الخليط بعود كبريت اشتعل الخليط بسرعة مخلفة سحابة من الدخان اخنقته معالمر في نجف كثافته ، خرجت من الغرفة و انا احس و متيقن انني مقبل على مرحلة جديدة من البحث و الابتكار محاطة بنوع من الغموض واميهم المعالم ، اسرعت الى الحاسوب و ارسلت رسالة قصيرة الى السيد ريتشارد اعمه من خلالها اني قد حصلت اخيرا على النترات ، في المساء جاء الرد منه مهنئا و مشجعا و محفزا و راجيا لي التوفيق في " برنامجي الفضائي المصغر " .

4.1 الاكتشافات

بدأت في تجربة كل الوصفات التي كنت قد اطلعت عليها من قبل ، خلط و تسخين ومزج و تذوب و تصلب ثم اشعال الحصيلة في ساحة المنزل و كنت اجد متعة لا مثيل لها في مراقبتها وهي تحتترق مخلفة سحابة من الدخان ترتفع على شكل قطر عملاق سرعان ما يتلاشى ثم لطخات سوداء في ارضية الساحة كانت والدتي تبدي انزعاجها من صعوبة تنظيفها .

تستطيع القول أنه نوع من الهوس ، إذ ان الدخان كان يرتفع من سطح المنزل على مدار الساعة خلال الأيام التي تلت حصولي على نترات البوتاسيوم هذا نهارا اما ليلا فقد كانت سحابات الدخان من الضخامة حتى تغطي الحومة كلها خلال دقيقة او اقل ثم تتلاشى ذات ليلة أطللت من النافذة و شاهدت شبانا قد أقروا مسرين مستفسرين حول مصدر الدخان معتقدين أن الأمر يتعلق بحريق ، مع مرور الأيام و الاسابيع قمت بتطوير نظام الاخلاع الكهربائي يعني يتم التحكم في الاخلاع بواسطة بطارية عوض الاخلاع
العادي، و في حقيقة الأمر هذه التقنية كنت قد توصلت إليها منذ أن كنت تلميذا في السنة الثامنة من التعليم الأساسي، و لمعت في ذهني هذه الفكرة عندما قام أستاذ الفيزياء باشعال كبة من سلك جيكس بين قطبي بطارية صغيرة حمراء لكي يبرهن لنا، نحن التلاميذ، عن التمظهرات الحرارية للطاقة الكهربائية، لما انتهت الحصة خرجت مهرولا إلى المنزل وبحثت عن سلك جيكس وعلبة عود الثقاب في المطبخ وجلست إلى طاولة وبدأت في قطع رؤوس عود الثقاب و تكسيرها ثم حشرتها مع سلك رفيع من أسلاك الجيكس ووصلت طرفها بإسلاك من نحاس داخل لفافة من ورق ثم أوصلت السلكين إلى قطبي البطارية واشتعلت اللفافة الورقية محدثة صوت يشبه فرقعة صغيرة و لازلت اذكر فرحتي العارمة عندما كنت أقوم بإشعال كمية من البنزين داخل أنية صغيرة بهذه الطريقة وانا بعيد عنها بعدة أمتار. كانت بالنسبة لي تقدم تكنولوجي هائل في تلك المرحلة، و بقيت تلك التجربة طي الكتمان إلى ان جاء دورها اليوم في تعزيز مساعي في فهم نظرية الصاروخ و تصنيعه بوسائل محلية ثم إطلاقه في الجو المحلي ببطيئة الحال، كنت أقوم بتصنيع قوالب من الوقود الصلب ثم أشعالها بفضل هذا الصاعق أو الفتيل كما يسميه أهل المشرق، و كنت ارافق كيفية اشعالها و مخلفاتها و كنت أراقب كمية اشعالها و تغير سرعة الاحتراق و شدة الوهج و كمية المخلفات، في واقع الأمر كانت النتائج تتوافق ما كنت قد اطلعت عليه في شبكة الإنترنت من تجارب سواء تجارب المهندس ريتشارد أو تجارب الآخرين من هواة الصواريخ عبر مختلف أرجاء العالم.

خلال شهر أكتوبر 2007 دخلت مرحلة إعداد ما أسميته ب Static Test Stand منصة الاختبار ألسكوني أو باللغة الإنجليزية: "Stand" و هذه الطاولة في واقع الأمر يوضع فيها محرك الصاروخ وهو مشحون بالوقود الصلب ثم تشغيله وهو في حالة ثبات قصد إجراء جملة من القياسات من بينها مثلا قوة الدفع الناتجة، شدة الحرارة، شدة الضغط، مدة الاشتعال، سلوك المحرك و...
هواية الصواريخ

فعاليته و مقاومته لعوامل الضغط و الحرارة و غيرها ، و هناك مستويات متعددة من هذا النوع من المناضد فهناك مثلا التي تحتوي على أجهزة قياس الكترونية للمقادير المذكورة و يتم وصلها بالحاسب قصد معالجة المعطيات المحصلة ببرامج خاصة، و هناك المناضد ذات مستوى أقل تحتوي أجهزة قياس تشوبية و هي في متناول من اراد تركيب واحدة منها ، و فعلا ذهبت ذات مساء إلى لحام وقمنا بتحليم القطع الحديدية وفق شكل معين و اجتهدت في شراء ميزان على شكل نابض ، تستطيع القول انه نابض مدرج من صفر إلى ثلاثين كلف وقتم بتركيبه في المنصة بمساعدة اللحام ، بينما نحن نلحم المنصة اذ دخل احد رجال الشرطة السرية الى المحل و بقي يتامل في ذلك الشكل الغريب الذي يتكلم امامه دون أن يعلم أن الأمر يتعلق بمحطة صغيرة للتجارب الصاروخية ، ومن خلال كلامه يبدو انه يعرفني كشاب مولع بالتكنولوجيا و الابتكار ثم انصرف مودعا صاحب المحل اخذا معه بعض الأغراض.
لما انتهينا من تركيبها حملتها على الدراجة عائدا إلى المنزل و هناك و ضعتها فوق الطاولة عدت إليها ليلا و قمت بتركيب المحرك الذي كان ينتظر لمدة سنة في أحد الدواليب نفست الغبار من فوقه و قمت بوصله و تثبيته في مكانه ، كان منظره مع المنصة منظرا يبعث على الإعجاب والانتهار و أحضرت الة تصوير رقمية كنت استعيرتها من احد الأصدقاء و بدات في التفنن باخذ صور مع المنصة و المحرك لتبدو الصورة لمن لا يعرفني كاني احد علماء القرن التاسع عشر و هو عاكف على اختراع جهاز خطير .

(رغبة غير مهذبة) .
المهم أصبحت العدة التجريبية جاهزة من كل النواحي: المنصة ، المحرك، الوقود الصلب، الصاعق، البطارية ، أسلال طويلة ، التصوير فيديو... وبيقت اتحين الفرصة للخروج الى ناحية من نواحي المدينة بحيث من المفروض ان تكون خالية من الناس و العمران : غابة او جبل.

5.1 تجربة بالصدفة

مر شهر اكتوبر ، وفي احدى ليالي شهر نونبر قمت بتجميع الكل و كانى ساقوم بتجربة اشعال المحرك ، قمت بهذا بدافع الفضول ، حيث و ضعت قليلين من الوقود داخل غرفة الاحتراق وو ضعت الصاعق داخل تجويف القالب و اغلت على الكل بالحنجرة و ثبتت المحرك على المنصة بواسطة اربعة لوالب و قمت باخراج الكل الى ساحة المنزل و كنت قد أخرجت سلكين موصلين من قطبي الصاعق و مددتهما بسلكين طويلين حوالي 5 امتار إلى داخل الغرفة التي اجري فيها التجارب و هناك كنت هيأت مصدر كهربائي ذو توتر 5 فولت ، ارتفعت دقات القلب ازدادت أعصابي توترا اذ استبدت بي فكرة مهينة : ماذا لو ضغطت الزر الان ؟؟ سرت اذرع الغرفة جيئة وذهبابا، ماذا لو حدث انفجار مدوي ؟؟ و أصيب الناس الهلع ؟؟ و أصاب بشظايا الانفجار ؟؟ ما هو موقف العائلة مما سيحدث و خصوصا والدتي فهي تخاف علي من أي مكروه يصيبني ؟؟..... او ربما قد لايدح أي شيء من هذه التصورات السوداوية و تمر الأمور بسلام ،اقتربت من الباب و اطلت براسي لكي ارى المحرك في ظلمة الليل ، أشعلت مصباح الساحة ، ظهر المحرك جليا و هو شامخ فوق المنضدة، الان ضغطت الزر، سمعت فرقة صغيرة كاتمة : بووم ، و فجأة علا صفير صاعق لم تقوى إذنائي على تحمله مصحوب بدخان كان
يخرج من فوهة المحرك، كانه البركان، في حركة لا شعورية، فزعت إلى داخل الغرفة، لم اجد مكان احتي فيه، لحظات مرت قليلة كانها الدهر، توقف الصغير، خرجت من الغرفة مسرعا إلى المحرك، لم أستطيع الرؤيا من شدة كثافة الدخان الأبيض الذي خرج توا من فوهة المحرك كانه ضباب ساخن وقد غطى الحومة كلها، بدت فوهة المحرك متوهجة شديدة الاحمار، اقتربت أكثر، لا زال الدخان يخرج منها وأحسست بحرارة المكان، إذن ني ازالتنا في حالة من الصمم ولاحظت أيضا ان المحرك قد خرج من مكانه الذي ثبت فيه، وانكسرت اللوائح، وأصبح راسه مباشرة على سطح الأرض. إذ ان الأرض هي التي اوقفته وليس المنصة، بالكاد سمعت باب الغرفة الأولى قد افتحت بقوة، افراد العائلة يخرجون في حالة من الذهول، بدأو وكأنهم أشباح وسطت غيمة من الأدخنة المكثفة: ماذا هناك؟ هل أصابك مكره؟ لما اردت الكلام وجدت نفسي في حالة من الذعر، كانت اطرافي ترتجف، خرج الكلام مبعثرا وانا احاول ان اطمئن الوالدة، لما تبين لها ما أنا عليه بدات تلومني على فعلتي هذه وان ابني على نفسي وعليهم، بطبيعة الحال هذا اللوم باللهجة البربرية المحلية، بدأوا يلحون حول المحرك في إعجاب وحذر و قد تبين لهم ان الأمر يتعلق بصاروخ فعلي وليس هزلا و لما هدات الإجواء دخلنا غرفة التي خرجوا منها و بدأ كل احد يحكى كيف كان يحس و ماذا اعتقد عندما سمع صفير المحرك كيف خرج من فرائه فزعا نحو الباب ليجد الساحة قد مملوءة دخان ذو رائحة غريبة، وفي واقع الأمر انا أيضا لاحظت رائحة الدخان الناتجة عن عادم الصاروخ التي لم يسبق لي معرفتها من قبل، وسارت بسبب عن استلهمه كما يجب الاستاذ عن اسئلة طلبه، افتكار و اعجاب بالذات ناتجة عن تجربة جديدة علي، المهم تحول ذلك الخوف والهلع إلى فرحة عارمة تختلط جوانحي، تتملخني رغبة في التحقك و السبح في الجو، لم امم الا الى وقت متأخر، لما برد المحرك حملت المنصة إلى المختبر و بدات في فحصه، اول ما لاحظته هو ان المحرك قد نتج...
قوة دفع أكبر بكثير من القوة القصوى التي يتحملها النابض الى درجة انكساره ثم كسر الحامل ومن ثم تشوه اللوالب و انعجارها تحت تأثير الدفع، وهو ما يعني ان القوة الناتجة عن دفع المحرك أكبر كثير مما كنت اتوقعه، نجحت التجربة ببساطة شديدة لم اتوقعها اضافةً، المحرك يستغل بشكل سليم ماعداً بعض التسربات التي يمكن التحكم فيها، لما فتحته وجدت بقايا قوالب الوقود، وهي قطع من اليلاس، قد تفحمت وتشوهت ماعداً بعض التسربات، وانبعثت منها رائحة كريهة، رائحة ب.ف.س، الصغير الذي سمعته اثناء تشغيل المحرك اعطاني فكرة عن سبب تسمية هذا الشئ بالصاروخ فما سمي صاروخ الا لصراخه و لله اعلم.

ذهبت الى النوم وانا احس ان حلم الصاروخ قد بدات تتشكل معالمه وانني قد دخلت مرحلة جديدة من البحث وصرت في مصاف الباحثين الذين يشغلون في نفس المجال، و كل واحد منهم وراءه حياة حافلة من المجد العلمي، لهكذا كان مسؤول عن البرنامج الفضائي لدولته و هذا كان مهندساً في و كالة ناسا و كل واحد الا ورائه مجد في دولته، حسرة تغمرني عند ما اتامل حال بلدي في هذا المجال، ودلت لو ان يكون لبلدي برنامج كما للدول الأخرى فأساهم فيه و لو بالنزر اليسير، صحيح ليس لدى تكوين اكاديمي عالي المستوى، لانني لا احب الطابع الاكاديمي في العلم، اؤمن بالتجديد في البحث حتى النخاع، قلت فالدولة التي تحتزم نفسها و ابنائها تحتاج الى كل العقول من كل الاطياف لبناء مشروع محترم وذو صيت عالمي، فهي في حاجة لجميع الدكتور ذو التكوين الاكاديمي الصرف، المهندس البازار، انويالاً، المهندس البازار، وذو الموهبة، المحترف ونابض، و المهوس بالابتكار، يتجارب، وقد يكون امياء، وذو الخيال الواسع، وصاحب العقلية التحليلية، يتجارب، اشعاعهم العقلية في بؤرة واحدة ليحدث الحرق، وخرق في جسم المجهول و إضاءة بانوار هذه العقول كلها مجتمعة، فليدي و الله احمد لا تنقصه العقول ولا السواعد ولا الموارد بل كل شيء...
هواية الصواريخ

موجود، ولكن عقولنا مهاجرة ومواردنا مبذرة و سواعدنا محقرة، يا حسرة على العباد....

6.1 المقلاة

ذات عصر كنت استعمل مقلاة لإعداد الوقود الصلب، و كنت ساعتها في أزمة من المقالي (جمع مقلاة) لاني كنت استعمل مقياس احضارها من المطبخ وسرعان ما كنت والدتي تصادر لي تلك الملاعق والإواني و المقاول، و اعطوني مقلاة تبدو من حيث الشكل انها تفي بالغرض، وبعد التدقيق فيها لاحظت انها تتكون من طبقتين، طبقة خارجية من الألمنيوم و أخرى داخلية من فلز اخر و مما لاحظته ايضا في هذه الطبقة انها كانت فيها بعض الثقوب الصغيرة، و قلت لأباي، ثقوب صغيرة لن يكون لها تأثير على تركيب الوقود الصلب وانهمكت في تسخين خليط النترات و السكر و تحريكه بملعقة فوق نار هادئة، و بعد مدة و في غفلة لم احس الا انفجار مدوي هز المقلاة و امتلاء وجهي بالخليط السائل الحار جدا، احسست بالم شديد في عيني هرعت النمس الماء، صبت الماء بغزارة على وجهي و خصوصا العيون و توقف الالمن و عدت بصري و رجعت إلى المختبر لمعاينة الخسائر الناجمة عن الحادث، و رأيت ان مساحة من الجدار، حيث كنت اشتعل، قد امتلت بالبقع البيضاء السائلة، اما المقاولة فقد انفلقت نصفين و كان ما اصابني في الوجه شئ قليل من الخليط، و قد وجدت تفسيرا، فقد تسرب الخليط لما أصبح سائلا عبر هذه الثقوب إلى الداخل بين الطبقتين وكلما ارتفعت الحرارة حول السائل إلى غاز، وهو ما...
يعني ارتفاع الضغط، و الضغط يولد الانفجار حسب القاعدة في فقه الفيزياء.

بعد نصف ساعة عاد الالم مجددا الى الوجه و لما نظرت الى المرأة رأيت حمراء منتشرة حول المنطقة العلوية من الوجه و هو ما يعني أنه ستتشكل بثور و اكياس مائية صغيرة على الجلد خلال الساعات القادمة، خفت كثيرا و هرعت الى الصيدلية القريبة و اشترى قرصا للتخفيف من اثار الحريق، و حسب علمي فان مصدر هذه المقلاة هو الصيدلية نفسها إذا ان صاحبة الصيدلية لما ارادت التخلص منها، ربما بسبب ثقوبها، قد اعطتها لاحدى شقيقاتي و جانت بها الى المنزل و بقية مهملة هناك لمدة إلى أن قمت باستعمالها في اعداد الخليط لتنفجر في وجهي.

بعد بضعة أيام كانت البثور قد بدأت في التلاشي رويدا رويدا وعاد الأمور الى نصابها، والدتي كانت دائما تحذرني قائلة انه ليس هناك من يأخذ بيدك اذا اصبت بالعمى جراء تجاربك، و في حقيقة الامر قد تعودت على هذا النوع من الإصابات ففي كل مرة كنت اصاب بالجروح جراء حوادث مماثلة.

7.1 محاولة التجربة الأولى
في الأيام التي تلت كنت اتحنين الفرصة للخروج أنا وأخي إبراهيم بالعدة التجريبية إلى الغابة المجاورة، وفعلا ذات مساء من شهر نونبر، كان اليوم يوم اثنين حملنا المنصة والمحرك والمعدات الأخرى وانطلقنا إلى الغابة وهي تبعد عن المنزل بحوالي كيلومترات إلى ثلاث و لما وصلنا كان المكان خاليا ويوحي بالرهبة والوجود وكان متوهج مما نحن مقدمون عليه، فعنا بتركيب المحرك وثبتناه على المنصة وقمت أنا بتركيب قالبي الوقود الصلب داخل حجرة الاحتراق وضعت فيها الصاعق، ثم قمت بتركيب الحنجرة فوق غرفة الاحتراق بشكل محكم، سلكا الصاعق يخرجان عبرة ثقب الحنجرة ثم يربطان بسلك مزدوج إلى مسافة حوالي خمسة إلى ستة أمتار. وقد أخذت صور تذكارية و أنا احمل المنصة والمحرك، و بطبيعة الحال كلما اقترب موعد تشغيل المحرك إلا واحتشت مشاعر الرهبة والخوف التي كانت قد عشتها في تجربة التشغيل الماضية في ساحة المنزل فأدرد قليلا، وكإجراء احترازي اخني وراء صخرة أو شجرة أو في مكان منخفض تفاديا لأي حادث طارئ أما إبراهيم فكان يبتعد أكثر، وابقي وحيدا أمام الوحش المزمجر، ثم أقوم بتشغيل كاميرا الفيديو قصد تسجيل عملية التشغيل من الأول حتى النهاية، بسم الله ضغطت زر البطارية، أحقق في المحرك، لم يحدث شيء، ضغطت من جديد لا شيء، بقيت متسائلا عن سبب عدم إشعال الصاعق، عاودت المحاولة من...
جديد لا شيء، بدأت في فحص الأسلاك كانت سليمة و البطارية كذلك كانت قوتها غير مقنعة، اهتمدت الى فكرة و هي تشغيل الدراجة و استعمال الكهرباء الناتج عن المحرك، و هي بطبيعة الحال الكهرباء المخصصة للإضاءة الطريق أثناء السير ليلا، لأن البطارية كانت تبدو غير قادرة على تسخين سلك الصاعق، قمتا بتشغيل محرك الدراجة و قمنا بوصل منبع التيار الكهربائي فيه بسلكي الصاعق ولكن بدون جدوى، كررنا المحاولة عدة مرات و في الأخير بلغ منا الجهد واستسلمنا للفشل، و قررنا العودة الى المنزل محملين بخيبة أمل في انجاز التجربة و أمل و إرادة في تحدي الصعاب التي واجهتنا خلال هذه المحاولة، و في حقيقة الأمر، لم استطيع تفسير عدم اشتغاله اليوم، رغم الحشد في الجهود و الوسائل و اشتغاله ذات ليلة لمجرد محاولة كانت للهزل أقرب منها للجد.

المحاولة الثانية { اول تجربة}

انتظرت مرور يوم السوق الأسبوعي الذي يكون يوم الثلاثاء قمت باعداد قليلين من الوقود الجاف و كان مجموع وزنهما حوالي ثمان مائة غرام، عشية الأربعاء 14 نونبر 2007 حملت مجددا المنصة و المحرك و امتطربت الدراجة و حيدا هذه المرة، استراح كن مشغلا، متوجها إلى نفس الوجهة مع تغير في المكان، إذ عمدت الى مرتفع يشرف على كل الجهات و بطبيعة الحال تسلمت المرتفع و انا أقود الدراجة، و ضعفت المنصة في مكان مكشوف و ثبتت المحرك كما هي العادة و في كل مرة كنت النفت يمين و يسار خوفا ان يفاجئني أحد، صمت رهيب شمس ساطعة، تميل الى الغروب، بدأت في تركيب المحرك و تثبيته مع المنصة و مددت الأسلاك إلى وراء صخرة كانت هناك، اتخذتها ملما و قمت بتشغيل الكاميرا ثم ضغطت الزر و انا أذكر اسم الله، احدث في المحرك.
لا شيء ، اضغط من جديد لاشئ مرة أخرى ، ينتابني شعور بالغضب ، اعود من جديد لفحص الأسلاك الممتدة من الخلف الصخرة إلى غاية فوهة المحرك ، كل شيء سليم ، اعيد الضغط من جديد ولا جديد ، ذهبت إلى المحرك وفتحت الحنجرة واستخرجت الصاعق وفتحته وكنت اتامله وقد لمعت في ذهني فكرة حيث أي كنت أكثر من أسلاك الكيكس وقد تبين لي بشيء من المنطق أن أسلاك الكيكس لا يمكن أن تحرق تحت ظروف بطارية ضعيفة ، لان حسب قانون أوم الكهربائي كلما كان سمك السلك كبير كلما نقصت مقاومته وبالتالي تنقص درجة الحرارة الناتجة عن مرور التيار الكهربائي وخصوصاً تيار البطارية ، فهمت لماذا لا تشتعل الصاعق ، ولكن خلال التجربة الأولى قد كان الصاعق يتكون من عدة أسلاك ولكن رغم ذلك حدث الاشتعال وقد فسرت ذلك بكون ان التيار الذي استعملته لم يكن تيار البطارية بل تيار محول قوي (علبة تغذية حاسوب) وهي قادرة على حرق الأسلاك مهما كان عدها ، وقد انتظرت الإشtribute في ذهني بشكل منطقي وتوابع الأحداث في ذهني ترابط منطقي ، سرت كثيراً لاهتدائي لهذا التفسير ، وفعل قمت بإزالة عدد الأسلاك إلى سلك واحد دقيق و أعدت تركيب الصاعق وثبتت سلكي التوصيل في قطبيه وتراجعت إلى خلف الصخرة وسالت الكاميرا من جديد ، وضغطت النزول لحظة سمعت فرقعة مكتومة أعقبها دخان قليل خرج من الفوهة هو دخان الصاعق ، فجأة يعلو صغير يصم الذات ، ودعاك أبدي منفوث إلى أعلى نفثاً قوياً ، اختبأت وراء الصخرة في حركة لاشعة ازتعلت وراءها الصخرة إلى قليل ، بعد لحظات توقف الصغير صدأ المحرك وصأحة الدخان بدأت في الابتعاد والتلاشي تتح تأثير الهواء ، خرجت من خلف الصخرة وأطلقت صرخة انسحابية ، حملت الكاميرا وأتجهت نحو المحرك وبدأت في ملاحظته من كل ناحية كانت حرارته جد مرتفعة حتى أني كنت أحس بها عن بعد وخصوصاً منطقة الحنجرة وفوهة ، ولاحظت كذلك بعض السيلات السوداء المتسرقة من الداخل نحو الخارج ، وبدأت في
التعليق على التجربة و أنا احرك الكاميرا حول المحرك بهدف التسجيل و مؤكدا مرة أخرى أن هذه التجربة قد فتحت صفحة جديدة في حياتي.

وبعد قليل اوقفت الكاميرا و فككت المحرك و وضعت الكل على الدراجة و هبطت اقود الدراجة مأشيا على ان وصلت الطريق و هناك ركبت و عدت و انا ارتزم و ناشدا هذا الفتح و اتحدث بصوت مرتفع معلقا بما قمت به من تجربة قد اعتبرتها الأولى من نوعها في تاريخ هذه المنطقة و ربما على مستوى المغرب باسره و لكن كنت لا اجرو على الاقتراح الى هذه الفكرة ، إذ لا أي وان احدهم يكون قد قام بما قمت به يوما ما في مكان ما من المغرب الشاسع و الله اعلم.

رجعت الى المدينة و دخلت البيت و اعلنت اني قد نجحت في اجراء تجربة الاختبار السكوني ، استعجب من استعجب ، و استخف من استخف و كانت تبدو من خلال الشاشة تجربة مدهشة بحق .عمدت الى الحاسوب و ادخلت الشريط في ذاكرة الحاسوب و بدات في اضافة تعلقات باللغتين العربية و الإنجليزية و قمت بوضعه في موقع اليوتوب و في ليلة الأربعاء عكفت على إعداد الوقود الصلب و الصاعق و هي عملية تستغرق وقتا مهما إذا أضيفنا إليها المدة الزمنية التي يتطلبها دق و غربلة ملح النترات و السكر كل على حدة ثم إعداد الصاعق ، عافدا العزم على إجراء تجربة أخرى يومه الخميس.

التجربة الثانية

و فعلا بعد زوال يوم الخميس 15 نونبر بساعتين ، حملنا المعدات انا و ابراهيم وانطلقنا الى الغابة القريبة و لكن ذهنا الى موقع اخر هذه المرة ، و هناك وضعنا المنصة في مكان مفتوح و ان كانت الأشجار كثيرة ، قمنا بتثبيت المحرك فوق المنصة كما هي.

25
العادة، الوقود الصلب، الصاعق، الأسلاك، غلق المحرك بالحنجرة باحكام ثم الرجوع إلى الخلف خلف شجيرة، تشغيل الكاميرا، بسم الله ضغط زر البطارية لحظات لينطلق صفير المحرك ودخان مقدف في الجو، لحظات معدودة لينتقل المحرك، أكبر الله على نجاح التجربة، احمل الكاميرا وهي تشتغل لكي اسجل ما طرأ على المحرك من تغير، و كان ما لاحظته ان نابض الذي هو مقياس قوة الدفع قد أصبح منفكا و استنتجت ان القوة التي ينتجها المحرك أكبر بكثير مما أتوقعه. منذ تلك اللحظة قررت بناء منصة جديدة أكثر قوة.

في المساء قمت بمراسلة المهندس ريتشارد وفي ردته طلب مني مجموعة من المعلومات تتعلق بخصائص المحرك وأبعاده و قطر ثقب الحنجرة و معلومات أخرى تتعلق كذلك بالوقود الصلب من حيث الوزن و ثقبه الداخلي و قمت بتصوير ما طلب مني و أرسلت له الصور و بعد عدة أيام أرسل لي ملف يحتوي نتائج المحاكاة البرمجية للقوة التي ينتجها المحرك وفق ظروف و المقاييس التي تم تجديدها من قبل و كان هذا البرنامج يدعى: Solid Rocket Motor.xls

حيث يمكن تغير أي عامل من العوامل على مستوى البرنامج، مثل كمية الوقود أو ثقب الحنجرة أو ثقب الوقود الصلب أو معامل التمدد الخاص بالحنجرة أو قطر المحرك و غيرها، و مشاهدة تأثير ذلك على منحنى القوة الدافعة للمحرك على شاشة الحاسوب سواء كان هذا التغير سالب أو موجب.

و فائدة هذا البرنامج يتمثل في التنبؤ بالقوة التي سينتجها المحرك قبل إجرآي أي تجربة أولا، ثانيا المساعدة في إيجاد تصميم للمحرك و الوقود الصلب يمكن من الحصول على أقصى مردودية ممكنة الـ.

ومن خلال النتائج الأولية اتبين أن المحرك، الذي صنعته انا، يعطي كمية لا يستهان بها من القوة الدافعة (حوالي 656 نيوتن كقوة دفع في مدة احتراق 1.4 ثانية)، وهو ما يجعل المحرك
يرتب في الخانة (1) للترتيب العالمي للمحركات الصاروخية، قمت بطباعة النتائج على الأوراق و صرعت أنظر إليها بإعجاب و افتخار.
و في واقع الأمر، وجدت صعوبة في فهم مصطلحات هذه المحاكاة و علمت أنني لازالت تنقصني المعرفة المعمقة لمحركات الصاروخية في نفسي تصادفت مع مفاهيم جديدة لم أمعدها و مصطلحات لم أعرف القصد منها، و من ثمة، لابد من الرجوع للكتابات الأكاديمية في هذا المجال، رغم أنني لا أجد راحتي، كما قلت، في الدراسات الأكاديمية الصارفة، ولكن ما لا يتم الواجب إلا به فهو واجب حسب القاعدة الفقهية.
رجعت إلى اطروحة السيد ريتشارد التي كنت قد طبعتها من قبل (حوالي 90 صفحة) و عكفت على مطالعتها و فك طلاسمها، و في واقع الأمر كنت أجابه تحديين: الأول لغوي، لأنني لم أتعود على الإنجليزية العلمية بعد، و إن كانت هذه أسهل بكثير من الإنجليزية الأدبية التي كنا ندرسها في كلية الآداب. و الثاني كان تلك المفاهيم الرياضية و المعادلات المعقدة التي كان السيد ريتشارد يستعملها للتعبير عن مختلف المقادير المرتبطة بمحرك و اشتغاله. كما قمت بترجمة هذه الرسالة إلى اللغة العربية و في حقيقة الأمر استغرق مني هذا العمل شهرا كاملا من العكوف على لوحة المفاتيح صباح مساء، و لما انتهيتها جاءت في حوالي 60 صفحة و كنت مسرورا في غاية السرور وارسلتها له، وما هي إلا أيام حتى ظهرت في موقعه العتيق تحت مسمي:

- Arabic translation of Solid Propellant Rocket Motor Design and Testing by R.Nakka (translation by Mohamed Elaouni)(PDF format) (1)
في واقع الأمر ازدادت يقيناً على أنني في المسار الصحيح للنجاح في إطلاق صاروخ هنا في العيون، وخصوصاً لما رأيت اسمى قد اصطفى إلى جانب أسماء كبار العلماء في مجال الصواريخ، علماء من مختلف الجنسيات ووهاو على أعلى مستوى من الخبرة والمعرفة، وهينها قررت أن أثق بنفسي أكثر وان أسير قدماً لتحقيق الهدف المنشود.

المهم رويدا رويدا سرت استوعب مختلف الجوانب من نظرية المحرك الصاروخي و اكتسبت خبرات نظرية جديدة سرت أطبقيها في إعداد الوقود الصلب والصاعق الخ.

و جدت كذلك ان موقع المهندس ريتشارد يعرض كتب تنتجها وكالة ناسا ، الكتب في مختلف التخصصات التقنية في مجال الفضاء، الصواريخ، التجارب، الاختبارات،

(1) http://www.nakka-rocketry.net/rn_thesis_arabic.pdf

كنت استعين بها في الاطلاع على ما وصلت اليه تكنولوجيا الصواريخ و كنت منبهر بالمستوى التقني العالي لهذه الكتابات.

التجربة الثالثة

10.1

مرت الأمور بسلام خلال شهر نونبر من هذه السنة و في الأسبوع الأول من شهر دجنبر قررت أن اقوم بتجربة ثالثة و تكون حاسمة بهدف المرور إلى الهدف الأكبر وفعلاً كما هي العادة قمت بتنهى كل مستلزمات التجربة و في مساء السبت 8 دجنبر 2007 حملنا المعدات على الدراجة متجهين إلى أقصى أطراف الغابة حيث توجد سهول شاسعة تمتد إلى ابعد افق، لما وصلنا كانت الشمس ساطعة و السماء زرقاء و الجو هادئ كأنه الجو الصيفي رغم أنه في عز الشتاء، قمت بتشغيل الكاميرا الرقمية و وضعتها قرب المحرك في مستوى منخفض حتى يبدو المحرك في خلفية السماء الزرقاء، و
هو ما يعني للصورة رونقاً وجمالاً أخذاً (حس فني دائم الحرص عليه عندما تكون الالة التصوير في يدي) تراجعت إلى الوراء (ابراهيم يحرص دائما ان يكون ابعد!!) ضغطت زر الأشعال فجأة دوي انفجار هز المكان ورآيت المحرك قد انتفض من المنصة وسقط بالقرب منها، بقيت مشدوهاً مدةً، لم استوعب ما وقع، المحرك ينفجر وتطير منه قوالب الوقود الصلب لتسقط بعيداً، نهضت متجهاً إليه، كانت الأمور أسوأً من المتوقع، لقد اختفت حنجرة المحرك و تكسرت المنصة بشكل كامل، تشكلت حفرة جراء انفجارات المحرك إلى أسفل حيث انفك من المنصة واصطدم بالأرض، أي قوة هذه التي حررها المحرك ليحصل ما حصل؟، بحثنا في المساحة الواسعة من السهل بحثاً عن القطع المتطايرة من المحرك، وخصوصاً الحنجرة فقد اكتشفت ولا بد من العثور عليها، وبعد جهد من الجهاد وال้ายاب وجنّاها في مساحة كانت حديثة الحمر، وجدناها وقد تكسرت اطرافها من جراء السقوط من علو، وأصبحت تحتاج إلى إصلاح.

عندما أتى البيت حاملين المعدات المنكسرة، وهناك عكفت على فحص المحرك و المنصة قد فهم وتفسير ما حصل للمحرك من انفجارات، في اليوم الموالي اتصلت بالسيد ريتشارد مخبراً اياه بما وقع، ومستف sĩا اياه حول الحادث من خلال تجاربة الشخصية، وفي رده أبدى استغرابه مما وقع وقال انه شيء جديد بالنسبة له، وقد طرح مجموعة من الفرضيات حول طريقة إعداد الوقود الصلب، وأكدت له ان لا شيء تغير، لا من حيث نسبة كل مادة على حدة، ولا طريقة التهيئة، ولا حتى أبعاد المحرك، في بداية الأسبوع الموالي حملت المحرك و الحنجرة المنكسرة إلى محل للخراطة (يوجد في حي النخلة)، وبعد جهد من التوبيكات والمحاولات، مع صاحب المحل، قصد تخفيض كلفة الإصلاح (حوالي ثمانين درهم لصلاح قطعة حديدية لا يتعدى حجمها مغلفة ابريق؟) انصرفت على موعد لاعود في اليوم الموالي، و لما عدت إليه كما تم الاتفاق ووجدت ان لا شي تحقيق مما
اتفقنا عليه و لما سألته عن التأخر قال انه كان منشغل في إصلاح محرك لأحد الفلاحين، و قفلت راجعا مرة أخرى متذمراً، وفي اليوم الموالي رجعت اليه و وجدت أنه لا شيء قد انجز بعد ذلك و طلب مني الانتظار قصد الشروع فيها حالاً، و لما وضعها في دواير المخرطة، وانا اقف بجنبه اراقب العملية عن كثب، بعد دقائق من الخرط و التدوير لم تستحمل قوة الضغط و تكسرت بشكل كامل و مأساوي، و هو ما يعني تصنيع مخروط آخر، و فعلا رسمت على ورقة الأشكال و القياسات التي يجب إتباعها قصد تصنيعها من جديد، وفي واقع الأمر لم يتم انجازها إلا بعد أسبوع من الذهاب والإياب و التسويف و المماطلة.

بدأت في التفكير في تصنيع منصة اختبار جديدة، بعد رجوعي لموقع السيد ريتشارد و جدت الكافي من المعلومات و النماذج المتعددة من المناضد،انجزها مهندسون وهوذا من مختلف ارجاء العالم، كما قلت سابقا هناك مناضد جد متطرفة تتوفى على مسابر الكترونية لقياس القوة الدافعة و هو ما يمكن من ربطها بشكل مباشر مع الحاسوب، و يمكن تسجيل منحنى القوة بدلالة الزمن، و هذه المسابر تتبع عبر الانترنت و لكنها غالية الثمن و خصوصا تلك المسابر القادرة على القتال الكتل الثقيلة. المهم عمدت إلى نابض ضخم، هو في الأصل كان يستعمل كمخدام للدراجات النارية، و قمت بمعايرته و تبين لي ما يسمى في الفيزياء ثابتة الصلابة الخاصة بالنابض، و هي العلاقة بين القوة المطبقه على أحد طرفيه و الاستطالة التي يبيدها تحت تأثير هذه القوة، و كانت حوالي عشرون كلغ لكل واحد سم، يعني أنه إذا تم تسليط قوة بمقدار عشرون كلغ فان النابض سيقلص (أو ي تمدد) بواحد سم و هكذا.

و مما كنت قد رأيت في الانترنت منصة مزودة بمسجل ورقي، وهو عبارة عن اسطوانة يتم تدويرها بمحرك مناسب و يتم تثبيت ورقة مليمترية فوقها تدور معها، و يكون قلم مناسب مثبت أيضاً على النابض و رأسه ملامس لسطح الورقة، و عند تمدد النابض
يتحرك القلم فوق الورقة راسما خطًا عمودياً، و عند ما تكون الاسطوانة في حالة دوران،
و هي حركة أفقية، يتكون لدينا منحنى تغير تمدد النابض ناتج عن تركيب الحركة العمودية والأفقية، و لتصنيع منصة بهذه الخصائص لا بد من الاستعانة بالالكترونيات والميكانيكا و الفيزياء.
غيرها، حملت مجموعة من القطع و القضبان الحديدية، فككتها من بقايا هيكل مشروع قديم كان فوق سطح المنزل، إلى لحام مجاور و هناك قمنا بتركيب المنصة بقياساتها و شكلها الجديد و قد أكثرنا فيها الثقوب و اللوالب، و بعد يومين كانت جاهزة و أرجعتها إلى المنزل و قمت بصباغتها بلون اصفر فاتح و كتبت، بطبيعة الحال، معلومات حول تاريخ و مكان الصنع و الاسم على سطح أملس كان فوقها الخ...
وقمت كذلك بتركيب دارة إلكترونية و ضعتها داخل علبة من البلاستك و ثبتها فوقها بإحكام، و قد المحرك المسؤول عن تدوير الاسطوانة، المهم بعد أسبوع من ذلك كانت المنصة الجديدة جاهزة و أخذت لها مجموعة من الصور و بعثتها بطبيعة الحال إلى السيد ريتشارد ناكا في كندا، و لم يبقى سوى تجربتها، و بتجربة رابعة قصد الإجابة عن جملة من الأسئلة من بينها مثلا، كيفية اشتغال المحرك بالحنجرة الجديدة، و محاولة تفسير الانفجار الذي وقع خلال التجربة الثالثة، ثم معرفة كيفية التي ستتصرف بها المنصة الجديدة و خصوصا النابض و المسجل الدوار و الدارة الإلكترونية أثناء تشغيل المحرك الصاروخي الخ....
11.1 بناء جسم الصاروخ

مع حلول السنة الميلادية الجديدة 2008 بدأت في التفكير في تركيب جسم الصاروخ: الهيكل، الزعانف أو الذيل، الرأس المخروطي، الصباغة، الاسم الخ. ...

عقد مجدداً إلى الإنترنت وبحثت و كان مما وجدت كتابان يتحدثان عن الموضوع بشكل مفصل باللغة الإنجليزية لأحد المهندسين السابقين لدى وكالة ناسا، قرأتهما بتمعن، و قد اكتشفت مفاهيم جديدة لم أكن أعلمها من قبل مثل: العلاقة بين مركز كتلة الصاروخ ومركز ضغط الهواء المسلط على الأجنحة أثناء الطيران، وكذلك قطر الهيكل لجسم الصاروخ و علاقاتها بشدة المقاومة الهواة الناتجة عن السرعة، كل هذه العناصر كنت أجهلها و صرت الآن اتعامل معها بشكل واقعي، ولم تعد
ترا فما او تكنولوجيا كما كنت اقول في السابق، و ذهبت الى محل بيع الانابيب البلاستيكية، و اقتنيت انبوب (بي.في.سي) قطره 11 سنتيمتر بطول واحد متر، و صنعت الذيل بالواحة خفيفية على شكل شبه منحرف و متناضبة الابعاد، المهم قامت بتركيب الأجنحة على أحد طرف انبوب، وقامت مع نفسي كيف يعقل ان تكون الأمور بهذه السهولة: مجرد انبوب و الواحة من الخشب الخفيف و غطاء مخروطية في الرأس و ها الصاروخ امامك واقف يتحدى في شموخ و إصرار.

و خلال هذه الفترة بالذات تلقيت رسالة من المهندس يستأذني لإضافة الصور والاشتراطات التي أرسلتها له طوال السنة الماضية إلى مجموعة من صور مطلق الصواريخ الآخرين من مختلف الجنسيات في قرص موجه للبيع، كان يقوم بتجديدها على رأس كل سنة، كانت هذه الرسالة مفاجئة سارة لي، هذه الخطوة تعني بالنسبة لي الشيء الكثير، مثل أن أعمالي ستعرض إلى جانب أعمال مطلقى الصواريخ آخرين من مختلف الجنسيات، ومعناها أيضا أن من يطلع على هذا القرص سيعرف أن هناك، على الأقل، مطلق واحد للصاروخ من بلد اسمه المغرب، وهو ما يعني اني حظيت بشرف تمثيل المغرب في هذا المجال، المهم سرت مزهو ذلك الحلم، و ما كان الا ان أبلغت الى السيد ريتشارد رسالة كترونية مفادها ان اقتراحه ليس مقبول فقط، بل هو محل امتنان و تقدير من جانبي، و كان رده كله تشكراً و عفان.

12.1 التجربة الرابعة

اقتنيت الة تصوير أخرى من عند احد الاصدقاء لان التي كنت استعملها قد أصابها عطب و يبست من إصلاحها، و طفقت في اخذ صورا مع جسم الصاروخ و المحرك و كذلك المنصة، إذ أتى كنت أمر بأزمة آلات تصوير، فقد حاولت اقتناة العديد منها، ولكن في كل
 مرة كان الفشل يلاحقني اما من حيث عدم اقتناعي من جودتها و جودة التصوير ، او من حيث غلائها الفاحش .

قمت بإعداد الوقود كما تعودت ، خمسة و ستين في المائة من نترات البوتاسيوم و خمسة و ثلاثين في المائة من مسحوق السكر و قليل من الماء المقطر في مقلاة ، ثم أضع فوق نار هادئة ، ثم يبدأ في الغليان مشكلا رغوة بيضاء كثيفة تتصاعد الى حواف المقلاة ، و هي تشبه إلى حد ما الرغوة التي تتشكل عند طبخ الأرز . ذات يوما رأنتي أمي أعد الوقود بهذه الطريقة فسألتني عن ما أقوم به ، فقلت لها انه شيء يشبه الطعام ، فقالت ساخرة ، أنه طعام الصواريخ ...، بعد ذلك لما تأملت في تعليقها تبين لي انه عين الصواب ، فالوقود الصاروخي هنا يتكون من سكر و ملح يحترق داخل حجرة شبه مغلقة فينتج طاقة تدفع الصاروخ ، وهي نفس المواد التي تشكل الطعام الذي نستهلكه نحن الأدميين لتعيش الخ...

قلت أنني أعدت كل شيء تقريبا و حرصت على ان تكون التجربة ناجحة ، تجربة الاختبار ألكسونو للمحرك الصاروخي ، إذ قمت بتطوير منصة الاختبار كما أشرت أنفا و أريد ان اعرف سلوك الوقود الصلب هل سيستغل كما هي العادة ام ينفجر مرة أخرى ؟، و أريد كذلك تجربة الحنجرة الجديدة التي صنعتها ، هذه هي الجوانب العلمية من أي مشروع مهما كان .

يوم الاثنين 14 يناير 2008 مساء ركبا الدراجة متجهين الى نفس المكان الذي أجرينا فيه التجربة السابقة ، في الطريق وجدنا رجال الدرك كانوا يراقبون السيارات على الطريق ، قمنا بتغير الاتجاه عبر طريق فرعي ضيق بر محاذاة أحد المعامل ، ثم صعدنا الى الجبل ، و أثناء توقفنا للاستراحة تذكرت اني نسيت الصاعق ، و لا يمكن تشغيل المحرك بدونه ، أخذت الدراجة و عدت مسيرا الى البيت و دخلت مباشرة الى حيث أجري التجارب اخذته من فوق الطاولة ، و أدخلته الجيب ، و خرجت مسرا و امتятиت الدراجة عائدا على وجه السرعة ، و صلت الى حيث تركت إبراهيم مع العدة التجريبية و من هناك أكملنا الطريق في حركة التفافية مع
سفح الجبل إلى أن وصلنا المكان الذي أجرينا فيه التجربة السابقة، كان الجو باردا مصحوبا برذاذ خفيف من المطر، كما جرت العادة، أخذت صورة ثابتة وانا احمل المحرك و المنصة الجديدة.

بمعية منصة الاختبار ومحرك الصاروخ
المهم قمت بتركيب المسائل كلها كما جرت العادة و قمت بتثبيت المحرك باللوالب و أدخلت الصاعق في قلب اسطوانات الوقود و اخرجت قطبيه من ثقب الحنجرة و اغلقت الحنجرة بشكل محكم و ربطت سلكين طويلين بقطبي الصاعق و أمهدتهما إلى وراء شجرة ثم شغلت آلة التصوير الفيديوية و وضعتها في مكان قريب من المنصة التجريبية بحيث تبدو السماء كخلفية للتسجيل و لكي يتم كذلك تصوير خروج الدخان من فوهة الحنجرة المحركاتية كما شغلت النظام الإلكتروني المتحكم في تدوير اسطوانة التسجيل، كما نزعت غطاء القلم و وضعته فوق الاسطوانة التي كانت قد بدأت في دوران بطيء.

تراجعت الى وراء الشجرة وانبطحت أرضًا وانا مركز بصري على المحرك، استخرجت البطارية من الجيب و قمت بربط احد
هواية الصواريخ

قطبيها مع أحد الأسلاك، أما القطب الثاني فقد مسكت السلك بقربه حتى أعدل من وضعتي، بسم الله، بإحد الأصابع أوصلت السلك بقطب البطارية وانا أشاهد المحرك، فجأة: بووووم... اهتزت المنصة كلها وقفزت من مكانها لمسافة مترا واحد.. بقيت فاعل الفاه لبرهة من الوقت لم استوعب الحدث، فجأة انفجر المحرك من جديد وطارت الحنجرة، كنت من ممكان متجها إلى المنصة لأعاين الحدث، وكان الدمار سيد الموقف، إذ ان المحرك قد فقد الحنجرة واصيب باعوجاج وثقب في الرأس، انكسرت العلبة الإلكترونية التي تتحكم في دوران الاطسوانة وسقطت على الأرض، النابض المسؤول عن تحديد القوة الدافعة، انفك من اللولب وباقي نصف معلق مع هيكل المنصة، تمزقت الورقة المليمترية التي تسجل عليها مخططات القوة، القلم المسجل انفك من مكانه أيضا، اسطوانة التسجيل انفتت من مكانها وصارت مائلة، المهم دمار شامل لحق المنصة جراء قفزها من مكان إلى آخر....

بدأنا في البحث عن الحنجرة في المساحة الفارغة الممتدة أمامنا لم نعثر على شيء، ثم بدنا في البحث داخل الغابة، بين الأشجار والحفر، كان المكان مقفرا وهو ما يوحي بالوحشة ورهبة، حوالي ساعة من البحث والدوران هنا وهناك، لما تعينا رجعنا إلى مكان التجربة وقمنا بجمع المنصة والمحرك وركينا الدراجة راجعين ونحن نحمل كثير من الخيبة وعجز في فهم ما جرى، لماذا ينفجر المحرك مرة أخرى؟ ماهي العناصر الخفية التي تتسلل إلى تركيبة الوقود لكي تغير سلوكه من الوداعة إلى العنف؟ تراية قوة خفية هذه التي تراوغني وتسخر مني؟ كلما شعرت اني قاب قوسين او دني من الوصول الا واكتشف ان الامر مجرد سراب يحسبه الضمان ماءا

ومن خلال هذا الفشل تبين لي ان حلم الصاروخ اخذ ينفلت مني دون أن أكون قادر على إيقافه رغم انه كان واقعا خلال التجربة الأولى والثانية،
اما الحنجرة فقد اختفت، و عدت مجددا عشية الثلاثاء إلى نفس المكان محاولا البحث عنها ، لكنني لم أجدها ، بعد ساعتين من البحث في السهل المنبسط و الغابة عدت اجر أذيال الخيبة ، وتيقت ان الحنجرة قد اختفت إلى الأبد ... و هو ما يحتم علي تصنيعها مرة أخرى مع ما يكلف ذلك من مال و مجهود و ذهاب و إياب إلى محل الخراطة، كل هذه العوامل تمثل كابوسا مزعجا صرت أكرهها.

المهم قمت بالتعليق على شريط الفيديو باللغتين الإنجليزية و العربية و حملته على موقع اليوتوب ثم نقلت عنوانه الرابط و نسخته في رسالة إلى المهندس ريتشارد، ليرد بعد يوم واحد معنا من خلال جوابه ان الأمر جديد بالنسبة له ، في حقيقة الأمر استغرت من جوابه ، كيف ان رجل بخبرة طويلة طويلة الايال يغيب عنه ، فقلت له ان هذا الأمر جديد بالنسبة له ، و استفسرته عن الأمر وقال انه رغم خبرته الطويلة هذه فهو لازال يتعلم، فقلت له نعم تتعلم شيء مفهوم، ولكن من مبتدئ مثلي ليس مفهوما ، و استطرد مجيبا انه يتعلم من أي كان ولو كان مبتدئ مثلني و في أي وقت كان حتى اخر يوم في حياته:

لاحظ تواضع العلماء و إصرارهم.

المهم شرحت له الكيفية التي تعد فيها الوقود الجاف، و أعطيته التفاصيل الدقيقة عن الحالة التي يكون عليها الوقود عند تصلبه، و كنت قد لاحظت خلال المرتين الأخيرتين انها أصبح تتشكل وفق بنية حبيبية وقابل للتفتت، و فاقد لخصائص الرطوبة، أي أنه لا يمتص الماء من الهواء المحيط عند ما يكون موضوع في مكان مفتوح، اذ انه في الظروف العادية عند وضع قطعة من الوقود الصلب في العراء فإنها سرعان ما تتشكل عليها طبقة لزجة لامعة ناتجة عن امتصاص الماء الموجود في الهواء الرطب. وخلال التجربتين الأخيرتين كان الوقود الصلب المتكون جافا و فيه ثقوب صغيرة و لا يتلزج (من اللزوجة) كما هو من المفروض، لما كتبته هذه التفاصيل للسيد ريتشارد كان رده سريعا و حاسما من حيث التفسير، و قال ان الطبيعة الحبيبية التي يتشكل وفقها الوقود الجاف تخلق فجوات داخل بنينه، وهذه الفجوات تعطي فراغ واسع تحترق فيه
الجزيئات بشكل سريع جداً مقارنةً من البنية الممتلئة في الوقود العادي و هو ما يؤدي إلى الانفجار عوض الاحتراق البطيء. لقد كان تفسيراً مدهشاً بحق، وفعلاً لما كنت أكمل اعداد الوقود كنت أقوم بجمع بقايا الخليط (يكون على شكل عجين) ثم اكوره على شكل كرات صغيرة ووضعها جانبًا حتى تتصلب، وعند إشعالها، كانت تنتشر بشكل سريع جداً، وقد تتطاير من مكانها كانها شهاب قابس. و كانت هذه الخاصية مصدر اعجاب بالنسبة لي، إذ كنت أقول مع نفسي أنهن تمكنن من صنع وقود صلب غاية في القوة.

و لما سألته عن البديل قال ان أحسن وسيلة لتفادي هذه المشكلة هي إعداد وقود جاف بدون ماء. وفي واقع الأمر، كنت قد اطلعت على هذه التقنية في موقعها من قبل، و الشيء الذي جعلني ابتعد عنها هو كثرة التحذيرات التي كتبها رفقة كيفية الإعداد والتخطيطات من مخاطرها، و إنها المقصودة التي كان يستعملها لتفادي هذه الخسائر، إذ انني لم أكن اتوفر على هذه الوسائل، مثل: جهاز تسخين كهربائي، محترق الإلكتروني، جهاز اطفاء الحريق يكون قريبا من طاولة الإعداد، قفازات جلدية، قناع واقي لمنطقة الوجه، الخ...

و خطورة هذه الطريقة تكمن في غياب الماء في الخليط، لأن مجرد خلط نترات البوتاس مع السكر، بدون ماء، يصبح الكل قابل للاحتراق، ويزداد الأمر خطورة عند وضعه كمية محترقة منه فوق النار، إذ إذا سقط أو تهون يؤدي حتما إلى احتراق الخليط بسرعة كبيرة، داخل المقلة، مع ما يصحب ذلك من شظايا متطايرة حارقة ودخان كثيف سيعمل الارجا كلها ونحن في غنى عن تبعاته.

و سيرى على نصائحه، عمدت ذات مساء إلى مقلة عميقة ووضعت فيها كمية من ملح النترات ومسحوق السكر، هذه المرة لم اضع الماء، وبدأت في تحريك الخليط بملعقة، وبعد دقائق بدأت جزيئات السكر في الذوبان وتنقل باللون الأصفر، وكلما ذابت هذه الجزيئات إلا وسجنت معها جزيئات نترات البوتاس، عند تصلبها بصبح الخليط متجانس، وسررت غاية السرور، لما انتهت
العملية بدون مشاكل، قمت بتكوير كمية من العجين الأصفر والذي كان جد ساخن، و لما برز وأصبحت تلك الكويرة غاية في الصلاوبة بلونها الأصفر الذهبي، لاحظت بداية تشكل تلك الطبقة اللامعة التي تحدثت عنها فوق، و كانت هذه دليلا كافيا بالنسبة لي على أنى قد وجدت مخرجا حقيقيا لطرد لعنة الانفجارات التي بدأت تلاحقني خلال التجربتين الأخيرةين، ولما أعلنتها كانت تحترق بقوة و لكن بثبات يبعث على الأطمئنان، و ابعثت في روح انطلاق جديدة، في سبر اغوار علم الصواريخ.

المهم اقتنعت أن مشكلة الانفجارات قد حلت بفضل التقنية الجديدة، و ما على سوى التفكير في إعداد الوسائل الكفيلة باستغلالها أحسن استغلال، مثلما يتعلق بالخلط و حجم الحبيبات السكرية و الملحية يجب ان تكون متساوية في الصغر، يعني يجب طحن و غربلة كل مادة على حدة طنها جيدا و غربتها حتى تصير ناعمة، و بعد ذلك يجب خلطها بشكل جيد، و السيد ريتشارد ذكر في موقعه ان مدة الخلط كانت حوالي 24 ساعة...!!!، مستعينا بالكة كهربانية دوارة.

خلال الأيام التي تلت قمت بتجميع المكونات التي تدخل في تركيب الة الخلط، محرك يشتغل بالتيار المستمر و جهاز تحويل التيار من متناوب إلى مستمر، ميقت ميكانيكي، و وعاء زجاجي يمكن غلقه و فتحه (علبة مربى من الحجم الكبير)، و الإطر المعدني الذي بركب فيه جميع هذه الأجهزة، ثم لواب للثبيت، مع ما يصحب ذلك من تلحيم و نقب و تقليع...

خلايا أيام كانت الاله جاهزة و تخلصت من جميع المشاكل التي كانت قد ظهرت في المرحلة الأولى من التركيب، و قمت بإحضار المواد بعد أن طحتنا جيدا ووضعتها في الوعاء الزجاجي للاله و أغلقتها بإحكام ثم بد التدوير، بعد حوالي ساعتين توقفت الالة بشكل ذاتي بفعل الميقت الميكانيكي، و لما فتحت الوعاء الزجاجي و استخرجت قليلا من الخليط و قمت بحرقه، واحترق بشكل سليم و عادي، و بعدها خطر ببالي أن المدة التي حددها السيد ريتشارد مدة
مبالغ فيها. إذ أن ساعة أو ساعتين من تدوير الخليط كافية للحصول على خليط متجانس. و بعدها بدات في التفكير في صناعة قالب خاص يصب فيه عجين الوقود الجاف حتى يتصلب وفق شكل و ابعاد هندسية موحدة و يكون أكثر اناقة من حيث المظهر العام و اشد إحكاما و تجانسا ، وهذا القالب يتيح انجاز العديد من اسطوانات الوقود بدون اللجوء لوسائل الأخرى ، و هذا القالب هو عبارة عن صفيحة مستوية من حديد يتم تثبيت قضيب من الفولاذ اللامع فوقها مع وسائل لغلق تسرب العجين الأصفر.

قربان الوقود الصلب

لما انتهيت من هذه الترتيبات بقي لي ايه السادة اعادة تصنيع حنجرة أخرى ، و كما قلت سابقا ، كنت اجد في نفسي تثاقلًا للذهاب إلى محل الخراطة نظرا لعدة اعتبارات، من جملتها مثلا، أن صاحب المحل لا يحب زبونه ان يملي عليه ما يجب القيام به ، فهو المعلم و صاحب المحل ، لذلك تراه يسألك ماذا تريد افعل به هذه ، ليقوم هو بالتخطيط و تحديد الأبعاد و القياسات ثم إقناعك ان ما يقوم به هو عين الصواب ، و إذا رفضت اقتراحاته تلك ، فإنه يقبل ذلك و لكن على مضض ، وقد ينتمك منك في أخر المطاف ، عندما يحدد...
لك اجرة ذلك العمل، على كل حال هذه مسألة نفسية يشترك فيها عامة الناس من الصناع والحرفين والمهنيين والتجار والفلاحين والأطباء والمحامين ومهندسي البلدية والمعلمين والفقهاء والعسكر وعمال النظافة والممرضات والحواة المحترفون منهم وَ الَهَوَاةِ الخ

الحاصل، ذات صباح، أخذت المحرك وأوضعته في كيس أسود واتجهت به إلى حي النخلة، إلى نفس المحل الذي كنت عنده في المرطة السابقة، وقد قررت أن أغير شكل الحنجرة، وأعطيته الشكل الذي سيعقوم بتنفيذه على ورقة بيضاء، ووافق على ذلك، و لما سالته عن ثمن ذلك قال أن ثمن الأتعاب هو مائة وأربعون درهما !!. مائة وأربعون درهما من اصلاح قطعة من جديد هو ثمن مرتفع، لما سأله التخفيف رفض ذلك معلنا ان ذلك يتطلب مجهود كبير، قبلت ذلك على مضض وأعطيته مائة درهم كتسبيق، و كان هذا خطأ مي، و انصرفت إلى حال سبيلي، عدت في اليوم الموالي، لا شيء بعد، وأحسست بنوع من الندم على عودتي لهذا المحل، فلأتلاس المهم أن تكون النتائج في المستوى المطلوب عدت في اليوم الموالي وجدته مشغول مع جرار، في اليوم الثالث كان غابا ولم يكن المساعد الثاني قادر على التعامل مع الآلة الخرط، في اليوم الرابع ذهبت مساء وجدت أن المحل مغلق، و لما سألت أحد جيرانه الميكانيكيين قال إنه لا يستغل يوم السبت والأحد، يعني لا يفتح المحل حتى يوم الاثنين، عدت يوم الاثنين مساء ووجدته، و لما سالته عن الانجاز ابدى اعتذاره عن التأخير معلنا ذلك بكثرة الأنشغالات وعدم كفاية الوقت، و هنا أدركت خطئي لما أعطيته التسبيق، و لما كنت له باستلزام المائة درهم إذا كان مشغولا رفض ذلك مؤكدا أنه سيبدأ فيها في الساعات القادمة، و طلب مني العودة في اليوم الموالي، و لما عدت وجدته فعلا قام بانجاز الحنجرة ولكن إيه حنجرة؟ استعمل حديد ذو سمك رقيق و كانت ذات ابعاد غير مسطحة، أصيبت بالإحباط مما رأيت، و قلت له أن
طريقة الإنجاز لا تدل على أنك معلم من جهة، ولا تبرر الثمن الذي طلبه مقابل اتعابه!!!

المهم، رفضت تلك الطريقة وطلبت منه إعادة توسيع حنجرة أخرى بمعدن غليظ، ويبن في اليوم الموالي، ولما أرسلني المحرك وفوقه الحنجرة بشكلها الجديد لم استسيع شكله العام، ولما اسكته بيدي بدأ تقييمي مقارنة مع الشكل الأول، إذ أنه استعمل هذه المرة حديد سميك جداً (حوالي خمس مليمترات)، أخذت المحرك ووضعته في الكيس وأطلعت له الأربعون درهماً، وانصرفت دون المحادثات التي تكون في هذه المواقف دون أدب الانصاف، لأن مشاعر الاحتياط والغضب وندم كانت طاغية على أي شعور آخر. كنت ساخناً على كل المستويات، من حيث مدة الإنجاز:

حوالي عشرة أيام من الذهاب والإياب، ومن حيث التكلفة: مائة واربعون درهماً، ومن حيث جودة العمل: إنجاز رديء، كل هذا من أجل إصلاح، كما قلت سابقاً، قطعة من حديد بحجم مغلقة أبريق!!!

رجعت إلى المنزل ولما وضع المحرك فوق الطاولة، وبدأت في تأمله، تبين لي أنه غير صالح بالمرة لأجراء التجارب، وقرررت إنجاز محرك آخر، مع اتباع نفس الخطوات التي قمت بها في بداية المشوار، إنه نوع من العودة على بدء، واخذت المنشار وشطرت المحرك نصفين غير اسف عليه، و لما شطرته احسست بنوع من الارتياح، هو شعور كمن يتخلص من شيء يكرهه، وعمدت إلى أنوب آخر بنفس الابعاد والقياسات، كنت قد أقتنعته من قبل، ولكن رغم هذا، فإنه لا يعفيني من العودة إلى محل الخراطة من جديد، ولكل هذه المرة محل آخر، وفعلاً في اليوم الموالي ذهبت إلى محل يوجد في وسط المدينة، وهناك وجدت في الاستقبال قناة تلبس بذلة زرقاء، استغرقت من تواجد امرأة في مجال مجال ذكوري بامتياز، وفسرت ذلك أنها ربما تكون تلقى تكويناً في مجال المكانة، وفعلاً لما شرحت لها ما اريده كانت على دراية تامة.
بالمصطلحات والمفاهيم المكانية المختلفة، ولما استفسرت عن تمن انجز تلك المغلقة التي تشبه القمع (الحنجرة)، قالت حوالي خمسين درهما، خمسين درهما فقط!!!. اخفيت اندهاشي من هذا الرخاء مقارنة بالمحال الأول، وتبين لي درجة عدم كفايتها في المجال التجاري، وكثر من ذلك طلبت منى العودة مبكرًا، في المساء. عدت، وقالت معتذرة أن التقني الذي يشغل الة الخرط قد خرج في مهمة لصاحب المحل، قبلت اعتذارها على أمل العودة يوم بعد يوم، في ضحى اليوم الموالي ركبت دراجتي على عجل راجعة كما تم الاتفاق، وفعلنا؛ وجدت أنهم قد انجزوا المطلوب منهم، وهي كانت عبارة حلقة تركب فوق الأنبوب عن طريق الدوران، أي انها لم تكن كلحنة بالكامل، وكان هذا خطأ آخر مدني، وكانت قد قررت إكمالها عند لحام مجاور للبيت وكانت تجمعنا صداقة قيمة، أخذت الكل و أديت الثمن المطلوب، وقالت راجعاً رأسا إلى محل التلحيم، وهناك بدأت في إكمال بناء الحنجرة واستغنت بالأدوات مثل المطرقة والسندان وزراعة لتشكيل القمع المخروطي الذي يلحم فوق أحد أطراف الحلقة التي أتيت بها من محل الخرط، وبينما انا منهمك في الطرق، وفي غفلة مدني انزاحت تلك الحلقة إلى موضع الطرق، و هوت عليها المطرقة مما أدى إلى اعوجاجها، القيت المطرقة بعيدًا، وأخذت الحلقة بين أصابعي اتفقت مكان ضرية المطرقة، وكانت قد تشهي ولم تعد صالحة بالمرة، و هذا معناني أن كل شئ عاد إلى موضع الصفور على البداية من جديد، تمكنت من مشاعر مختلفة، حسرة تعنصر القلب و غضب و ندم تنتج ناحمها في الفوائد، ولكن ياستسلام، قد تعلمت من خلال تجاربي إعادة المحاولة وراء المحاولة حتى يتحقق المراد، هذا من جهة، ومن جهة أخرى لا يمكن ان تحمل تلك السعادة العارمة لحظة تحقيق النجاح، إذا لم تمر بهذه الظروف القاهرة، كما يقول أهل الصين: لا يستمتع بمنظر السهل من لم يتعبد في صعود المرتفع.
قررت العودة من جديد من حيث أتيت، أخذًا معي الحلقة والمحرك، لما وصلت شرحت لهم حيثيات ما وقع ولما تبين لهم ما كنت أرمي إليه أكدي التقني المسئول عن المخرطة أنه بإمكانه القيام بنفس ما كنت أسعى إليه، دون اللجوء لا إلى اللحام ولا إلى المطرقة، وبالتالي ربح المجهود والوقت، وولما أبديت موافقتي أكدي لي أن تم إعادة تصنيع شكل آخر هو خسون درهما، كما المرة السابقة، ما كان على الإلزام أتفق من جديد، ماذا يفعل النصيحة أمام طبيبه؟ الحاصل عدت إلى البيت وانا منهك القوة، وانا أسأل متى ستنتهي هذا المشوار؟ لما اذا انا سيء الحظ إلى هذه الدرجة؟ و غيرها كثير من الأسئلة. تناولت طعام الغداء على عجل، لكي أعود لأرى ماذا فعل بالمحرك، امتطيت دراجتي متجها إلى مركز الخرط، لما وصلت كان الوقت بعد الزوال، ودخلت إلى مركز الآلات، وهناك وجدت صاحب المحل (الحجاح) حيث كانت تربطه مع والدي (رحمه الله) صداقة قديمة، استقبلي بحفاوة ورحبة بي أيضا تحراب لأنه كان يعلم انني صاحب تجارب في مجال التكنولوجيا، و كان كثيرا ما يسألني عن الجديد و عن مدى استمراريتي في الابتكار و الاختراع كليهما التقنيا، المهم بعد ان انتهينا من عبارات المحبة و السؤال عن الأحوال، وقال لتلك الفتاه التقنيه ان تنظر ما أنا قادم من أجله، وأخذت المحرك من تحت الطاولة ووضعته فوق الطاولة، ظاهر للعيان أمر بقي كل من كان هناك من هناك من الناس، و في حقيقة الأمر بقي كل من كان هناك مركزنا نظره على الجسم الغريب لأنه شيء لم يسبق لهم مشاهدته من قبل، وكان من بينهم أحد الفضوليين كانت لي به معرفة مسبقة وهو الشيء الذي شجعه عن استفساري عن ما هذه الأنابيب الغريب الشكل، و في واقع الأمر، أحست بالحرج من شدة إلحاحه، غير أن صاحب المحل تدخل قائلاً أنى (يغني أنا) الوحيد الذي أعرف ماهية ما أنا بصدد صنعه، و كان هذا تدخلا لصالحي، تخلصت به من إلحاح الرجل الآخر.
لما أردت أداء ثمن الإصلاح المتفق عليه و الابتعاد، تدخل مرة أخرى من قصصا من المبلغ رادا علي تقريبا نصفه، وأوصي كذلك التقني المكلف بالمحل بان يعتني بمطالبي بمثله كليا جئت للمحل. شكرته على ذلك بكل جوامع و ودعته على امل اللقاء في وقت قريب. و ضعت المحرك في كيس أسود و ركبت الدراجة عائدة الى المنزل، هناك أخرجت المحرك و صعدت به إلى المختبر، و وضعته فوق طاولة و بدأت في تأمله، لقد كان مدهشا بحق، قوية القامة، قوي البنية، حتى سرت أشده إلى صدر قوي، كما تشد الأم و ليدها إليها.

أخذت اجري مجموعة من القياسات في أبعاده من حيث الطول و العرض، لقد كان مختلفا عن المحرك الأول (الوهاج-1)، أنه ليس الوهاج واحد !!، إنه الوهاج-2!!.
الحاصل أيها السادة، اني قد تجاوزت كل هذه العراقيل، و التي هي من طبيعة الأشياء في أي مجال من المجالات، ولم يبقى الا تجربة أخرى تكون حاسمة من كل النواحي.

خلال الأسبوع الأول من شهر فبراير كنت منهمك في إعداد الوقود الجاف وفق الطريقة الجديدة، وقد وفقت اما توفيق في مطابقة النتائج المظهرية للوقود الذي يعده مطلقو الصواريخ الاخرين، وخصوصا لما أرسلت صور الوقود الجديد للسيد ريتشارد، وقد أبدى إعجابه بالنتائج المحققة عليها. و تمنى لي مزيد من التوفيق و النجاح.

وكنت افكر كذلك في كيفية انجاح التجربة المقبلة و تفادي الاخطاء التي ارتكبت خلال المراحل الماضية، من بينها مثلاً ربط الحنجرة من العنق بواسطة سلك طويل حتى و إن كان هناك حادث انفجار كالمرات السابقة، تكون مربوطة بشكل موثق إلى منصة الاختبار حتى لا تطير بعيدا و تفقد إلى الابد،

التجربة الخامسة 13.1

اختصاراً، في يوم 14 فبراير 2008 على الساعة الواحدة و الستون حملنا معدتنا كما هي العادة فوق الدراجة و اتجهنا صوب الغابة، غير اننا قررنا تبديل المكان الذي سنجري فيه التجربة هذه، لاني قد تطيرت " من المكان الذي أجرينا فيه التجربتين السابقتين الفاشتين "، و اتجهنا صوب قمة المرتفع الجلي لجلب "سيدى محمد الصالح"، و قد تغلغنا فيه إلى ان أصبحنا نظل على سهل "ذراع الغزلان" و كان معمل الاسمته يبدو بعيدا في الأفق بعموده الدخاني الصاعد إلى أعلى. اخترتنا مكان منبسط و بدأنا في وضع المنصة و المعدات الأخرى، و قمت بثبت المحرك الجديد باللواء فوق المنصة، كما ربطت عناق الحنجرة بواسطة سلك طويل مربوط إلى المنضدة، تفاديا كما قلنا سابقا لأي خطأ قد يؤدي إلى فقدان الحنجرة كما حدث خلال المرتين السابقتين.
ووضعت إسطوانتي الوقود الصلب الجديد داخله ، و اغلقت عليهما بالحنجرة ، ثم قمت بتشغيل كاميرا الفيديو ووضعتها قرب المنضدة ، ثم فتحت زر تشغيل العلبة الإلكترونية وبدأت الإسطوانة الدوارة المكسوة بالورق الميليمتر في الدوران ، تراجعت للوراء لعدة أمتار و انبطحت أرضا في مكان أمن ، كنت احس بتنوع من الخوف والقلق ، وهو شئ طبيعي اذ ان اسم الله ثم اضغط زر الالغاز، كنت مركزا سمعي و بصري و كل الجراح على المحرك (الوهاج-2) فجأة سمعت صوت مكتوم قد انبعث منه وخروج كمية قليلة من دخان اسود عبر فتحة الحنجرة ، وهو صوت انفجار الصاعق ، ثم علا الصفير المدوي و اندفاع دخان أبيض بشكل جد كئيف إلى أعلى لمسافة خمسة أمتار قبل ان ينحني تحت تأثير التيار الهوائي ، ثم شاهدت تزلزل المحرك إلى أسفل في حركة خفيفة لمسافة ستة سنتيمترات ثم عودته كما كان تحت تأثير النابض القوي، و حدثت هذه الحركة كرد فعل لقوة الاندفاع الغازى من الحنجرة ، ثم شاهدت احمرار هذه الأخيرة بفعل الحرارة العالية و بعدها توقف الصغير و هذا المحرك و ان بقيت شعلة من اللهب تخرج من الفوهة ، صحت مكبرا : " اللهم صل على محمد و على ال محمد...!!! " قالتها هكذا بشكل اعتباطي ، و بعدها تبين لي اني كنت شيعيا في هذه المسألة اذ ان الصلاة على رسول الله بهذه الطريقة هو من اختصاص الشيعة ، و قد تسربت الى ذهني عندما كنت اتابع في الإنترنت عمليات إطلاق الصواريخ الإيرانية، و عندما كانوا ينجحون في تجربة صواريخهم تسمع منهم صلاة على رسول الله بهذه الطريقة ، اخذت الكاميرا وهي في طور الإستغلال و هرعت الى المنصة ، و التحق ابراهيم ، و بدأت في الدوران حول المنصة و كانت أسطوانة التسجيل لازالت تدور ببطء و قمت بابتهاطها و قد لاحظت ان المبيبان الذي رسم على الورقة الميليمترية قد بلغ في طوله حوالي ستة سنتيمترات و هو ما يعني ان المحرك قد حارب قوة دافعة تقارب مائة و عشرون كلغ !!! او الف و مائتي نيوتن حسب التعريف الدقيق للقوة.
الناتجة و من اجل تحديد ما يسمى بالنبض الخاص فانه يتم ضرب القوة الحاصلة في المدة الزمنية التي اشتغال فيها المحرك، مثلا إذا أردنا ان نحسب النبض الخاص لهذا المحرك فانه يكفي ان نعرف مدة اشتغاله التي هي 1.5 ثانية و بالتالي نقوم بحساب جداء القيمتين (1.5*1200=1800 ن/ث) أي ان النبض الخاص يساوي الف و ثمان مائة نيوتن على الثانية. المهم ايها السادة أبديت سرورا بالغا ماله من ظنير، فرحة عارمة، لم لا وقد نجحت التجربة بشكل حاسم، ومن كل ناحية، حتى المنضدة ادت دورها بشكل سليم، النابض تقلص و تمدد تحت تاثير قوة الدفع، القلم المسجل بدوره خطط و سجل شكل التقلص الذي بدأنا النابض، المحرك الدوار دار و أمعن في الدوران، المحرك الصاروخي زمر و ارعد ذهلت من شدة النجاح الذي تحقق، لم أتوقع ان التجربة ستكون بهذه القوة، كل شيء كان مثاليا. اما تلك المشاعر المحبطة و الباعثة على اليأس عندما كنت انتقل من مخرطة الى مخرطة لتركيب المحرك و غيرها فقد أصبحت الآن من الماضي، احترقت تلك المنغصات عند أول شرارة اطلقها المحرك. قمت بجل تلك الأسلاك التي كنت قد ربطت بها عنق الحنجرة حتى تعزل أي انفصال محتمل، و في الأخير فككت المحرك ثم قلنا راجعين، و عندما اكون فوق الدراجة فإنني أبدا في إنشاد ترانيم من وحي الانتصار.
اثناء دخولي المنزل أعلنت عن نجاح التجربة، كما هي العادة هناك من يفرح و يهنئ و هناك من يبدي تبرما معتقدا إن ما أقوم به مجرد تضيع للوقت و الهاء عن المشاريع الأساسية مثل التفكير في المستقبل و الزواج و الإنجاب و تكوين الأسرة و بناء منزل و جمع المال...الخ.

عدت الى الحاسوب و نقلت الشريط من ذاكرة الكاميرا الى القرص الصلب ثم فتحت برنامجا لمعالجة مقاطع الفيديو و بدأت في إضافة بعض المعلومات مثل تاريخ التجربة و ترتيب المحرك و شدة القوة الناتجة...الخ. وبسرعة قمت بتحميلها على موقع يوتيوب ثم ما لبثت ان نقلت عنوانها الترابطي و قمت ببلصقها في رسائل أرسلتها الى كل الأصدقاء المقربين في مختلف الدول، أما السيد ريتشارد فقد خصصته برسالة ذكرت فيها كل مناحي التجربة و كل تفاصيلها الدقيقة، و في اليوم الموالي كنت أتلقى الردود و خصوصا رد ريتشارد الذي هنأني على النجاح و مع تمنيه مزيد من التوفيق و النجاح. في اليوم الموالي كنت أتملئ في تسجيل التجربة و
نكنت أشنف سمعي بصغير المحرك الصاروخي، كان بالنسبة لي لحنا خالداً عزفته على أوتار من حديد و نار...

الحاصل أيها السادة بدت الطريق الآن نحو إطلاق الصاروخ أكثر سهولة ويسر وقد عدت إلى الجسم الصاروخي الذي كنت قد ركبته من قبل، وبدأت في إتمام ما كنت قد بدأته من قبل، بدأت في التفكير في الاسم الذي سأطلقه عليه، ثم عملية تسمية أول صاروخ لدولة ما مثلا تكون من الأهميةً في مكان فلادن أن يكون اسم الصاروخ محمل بكثير من الدلائل سواء علمية أو وطنية أو دينية، فكل الدول التي تسمي صواريخها الأولى تتبنيم بذكرى أحد رجالاتها الكبار في تاريخها قصد إذكاء الروح الوطنية والعلمية في الأجيال الصاعدة، فالهند، مثلاً، قد سمت صاروخها "براهموس ", إيران فقد سمتها "عاشوراء", إسرائيل أطلقت عليه اسم "شاحور", إما روسيا فقد سمت صاروخها "طبول- م " (الشيطن) الذي هو مفخرة الصناعات العسكرية الروسية....الخ

تبهرني شخصية عباس بن الفرناس و لذلك قررت أن اطلق اسمه على أول صاروخ أقوم بتصنيعه، وفي حقيقة الأمر كنت مترددًا ببعض الشئ، فلا أعلم أن كانت خطوتي هذه فمحلها أم لا، فكنت أقول في نفسي من أنا حتى اتجرا وأجمع قطع من خشب و بلاستيك على هيئة صاروخ ثم أرسم عليها اسم لكبر علماء التكنولوجيا في عصره؟، ولكن السبب بجري دولة عربية مسلمة أن تبني برنامجاً فضائياً ثم تضع اسمه على اجسم صواريخها كعربون امتتان وتقدير لقد الرجل في مجاله؟. ومن منطلق علمي ان الجواب على هذا السؤال هو النفي كنت مقتنا بان ما لا يدرك كله لا يترك جله،

اسوق للقارئ الكريم نبذة عن حياة عبار ابن الفرناس من الموسوعة الحرة وكيبيديا:
أبو القاسم عباس بن فرناس بن فرداس التاكرني (810-887 م)، أول من حاول الطيران، ومن الواضح حسب المصادر أن عباس بن فرناس قام بتجربته في الطيران بعد أبحاث وتجارب عدة، وقد قام بشرح تلك الأبحاث أمام جمع من الناس دعاهم لبريهم مغامرته القائمة على الأسس العلمية. يقول ابن سعيد في "المغرب في حلى الغرب "ذكر ابن حيان: أنه نجم في عصر الحكم الربضي، ووصفه بأنه حكيم الأندلس الزائد على جماعتهم بكثرة الأدوات والفنون، وكان فيلسوفاً حاذقاً، وشاعراً مفلاً، وهو أول من استنبط بالأندلس صناعة الزجاج من الحجر، وأول من فك بها "كتاب العروض للخليل، كثير الابتكار والتوليد، واسع الحيل حتى نسب إليه عمل الكيمياء، وكثر عليه الطعن في دينه، واحتال في تطوير جثمانه، فكساً نفسه الريش على سرق الحرير، فتهنيه له أن استطاع في الجو من ناحية الرصافة، واستقل في الهواء، فحلق فيه حتى وقع على مسافة بعيدة". يعتبر المسلمون كا ورد أول إنسان يحاول الطيران، 1000 قبل كليمون ادار.
من المصادر أن بن فرناس صنع آلة للطيران بعد دراسة وت漂ح ميكانيكا الطيران عن الطيور وأفلح في طيرانه ولكنه بعدما نزل حكم بتهمة التغيير في خلقه الله وتم عزله في بيته.

في ليبيا صمم طابع بريد يصور محاولته الطيران وأطلق اسمه على فندق مطار طرابلس، وفي العراق وضع تمثال له على طريق مطار بغداد الدولي، وسمي مطار آخر شمال بغداد باسمه مطار ابن فرناس تكريما له سميت فوهة قمرية باسمه وتعرف بفوهة ابن فرناس القمرية.
الحاصل ايها السادة عدت مجددا الى اعمال ريتشارد ناكا في ما يخص كيفية بناء الصاروخ ثم معرفة العلاقة بين مختلف اجزاءه ووجدت ان الأمر فيه الكثير من العلاقات الرياضية التي تنظم هذه الأجزاء تنظيما، فمثلا العلاقة بين قطر الصاروخ وطوله وطول الأجنحة وشكلها وكتشفت
هواية الصواريخ

مفهوم منها مثلا مركز الضغط ومركز الكتلة، وهذا المفهوم الأخير كان قد درسناه في مادة الفيزياء ولم أكن أعرف مجال استعمالها إلا بعد الآن، فمثلا مركز الضغط مفهوم يتكون عندما يمر جسم الصاروخ في تيار هوائي وهذا التيار يشكل ضغطا على مختلف أجزاء الصاروخ كل حسب مساحته. فكلما زادت المساحة في منطقة معينة كلما زادت قيمة الضغط هناك، وعلى يج مراعاة المسافة بينه وبين مركز الكتلة، ولن توضح لك العلاقة بينهما أنظر إلى شكل السهم الذي يتم إطلاقه بالقوس فهو مزود بريشة في مؤخرته وهو ما يعطيه استقامة في الحركة بحيث يبقى الرأس دائما في المقدمة سواء صعودا أو هبوطا و كاننا نقول للهواء اضغط على الصاروخ في مؤخرته حتى لا يحدث دوران الصاروخ أثناء انتقاله و يصير كم يرمي عمودا في الهواء لا غير، لذلك توضع ثلاثة أجنحة أو حتى أربع في مؤخرة الصاروخ وغالبا ما يكون طول كل جناح ضعف قطر الصاروخ وإذا درسنا تأثير الهواء على جسم الصاروخ فاننا سنجد أن أكبر تأثير يكون قرب الاجنحة، واما مركز الكتلة، كما قلت فإنه يحدث في الصاروخ بعد تركيب المحرك وتعبئته بقضايا الوقود، ثم غلق الكل، ثم بعدها تاخذ حيلا و نتديره على جسم الصاروخ بين وسط الطول والاجنحة ثم ترفعه اليد، وتحاول أن يكون الصاروخ في حالة توازن تماما كما كفتى الميزان وهذه النقطة التي يكون فيها الصاروخ متوازنا تسمى مركز الكتلة، و العلاقة بينها وبين مركز الضغط هي أن لا يجب أن لا تقترب هذه بتكلي يعني مركز الضغط من مركز الكتلة على الأقل بمسافة تعادل قطر الصاروخ إذا اردت أن يطير صاروخك بثبات و استقرار.

اما ما يتعلق بكيفية تركيب المحرك داخل الانبوب الصاروخ فانى قد استعن بتلقات من خشب سميك بحث
يمكن ادخال المحرك في داخلها ثم ادخال الكل في جسم الصاروخ و تثبيته بواحل من خارج هناك حلقتين واحدة فوق الأخرى تحت، أما ما يتعلق بالرأس المخروطي فهو بدوره يجب أن يخضع لمقاييس في ما يتعلق بشكل مخروطيته، وكيفية صناعته وما وجدته طريقة صناعة الرأس المخروطي بحيث تصنع عادة بالالياف الكرتونية أو الزجاجية، وهي التقنية التي تستخدم في صناعة الطيران بصفة عامة، صراحة لم أكن أتوفر على الامكانيات لاقتناء هذه المواد و استعمالها، ثم ان الغرض من فلسفة هواية الصواريخ هي الاقتصار على المواد المحلية في تركيب الصاروخ و النجاح في إطلاقه، ذهبت ذات مساء لأحد محلات المختصة في تلحيم الأباريق و صناعة القواديس بواسطة الزنك (الخارقين بالعربية) وقد طلبت منه ان يصنع لي مخروطا ابعاده كذا و شكله كذا الخ... ولما رجعت لاحظه كان مخروطا مريعا بحق لا من حيث الشكل ولا من حيث الدقة ولا من حيث الجمالية التي من المفترض ان تكون في رأس الصاروخ، دفعت له ثمن ذلك العمل ورعت به ووضعته في مكانه على جسم الصاروخ وكان مخروطا مائلا من البداية كان يشبه قبعة البهلوان انزلته و رميت به في صندوق المهملات غير اسف عليه، وكحل بديل فيما سبق كنت قد لاحظت ان شكل قنينات احدى المشروبات الغازية شكلها يناسب تماما للاصاروخ، بسرعة قمت بتجربتها و ادخالها هناك مكان المخروط، لقد كانت مناسبة، بسرعة قمت بشطرها نصفين و تشكيلها و تعديلها و صباغتها و تركتها تحت اشعة الشمس لكي تجف، وفي المساء وضعتها في رأس الصاروخ، كانت مناسبة بشكل مدهش، أو كما قال الشاعر:

كانما خلفت له و خلق لها و ان رامت
لغيره لزلت الأرض زلزالها
المهم صارت الأمور جاهزة ولا ينقصنا إلا موعد الإطلاق، صراحة كنت كلما تذكرت هذه المسألة والا واحس بخوف ورهبة غريبة تجتاحني احساسي بثل في المعدة وفراغ الالبكتين، كنت احس بأن هذه التجربة هي بمثابة بوابة لمرحلة جديدة ساكون مضطرا لخوض غمارها بإيجابياتها وسلبياتها و كنت متخوفا من السلبيات أكثر وخصوصا موقف السلطات هنا، وخصوصا الحرب على ما يسمى بالأرهاب تجتاح وسائل الإعلام وهو ما يحتم زيادة اليقظة والانتباه من طرف اعوان السلطة والشيوع والمقاديم وكنت اعلمت مصدر الكثير من الشباب بعد قيامهم بتجارب كيميائية تتعلق مثل خاير الاميبنوم وحمض الكولوريديك داخل قنينة وتترك انفجارات صوتيات مبدؤي داخل مؤسسة تعليمية كأن مصدرهم المحاكمة العسكرية و السجن عسكري أيضا ، كنت ارى هنا غباء في كل شيء التلميذ غبي حيث وضع التجربة في غير محلها كان عليه ان يذهب بعيدا خارج المدرسة في فضاء مفتوح و يحدث ماشاء من التجارب ومدير غبي حيث تسرع في اعلام السلطات المحلية و السلطات المحلية غبية انها اتصلت بالسلطات الإقليمية و المركزية لأنها سلمت الأمور إلى المحكمة العسكرية وهي غبية ايضا ، تجاكم تلميذا لأنه اجري تفاعلا يدرس في القسم في مقرات الوزارة.

نعم أنا لدي حيويات خاصة بي فانا معروف لدى الجهات المختصة بفضل المشاركات العلمية التي كنت اجريها على الصعيد المحلي والوطني بحيث تكون السلطة حاضرة هناك، مثلا ذا يوم نظم مهرجان ثقافي في العيون وقد شاركت فيه وكان من بين الحضور عامل اقليم تاوريرت السيد البوشخي وقد استحسن ما كنت اقوم به وقال في خطبته للحضور انهم من الواجب عليهم تشجيع الشباب و الكفاءات المحلية في مختلف المجالات، اضافة الى اني
حاصل على براءات اختراع و من جهة أخرى فانا احاول ان اكون مبتعا قدر الامكان عن اعين الناس عندما اجري هذه التجارب ، يعني احاول ان لا اعطيهم ذريعة للتدخل رغم انهم يعلمون بما اقوم به ، اذهب بعيدا حيث لا يراني الا الله واقوم باجراء التجارب .
ثم اني لا ابتعزي من خلال هذا العمل لا فسادا في الارض و لا الاستعلاء على احد من خلق الله كيفما يكون ثم اني استخير الله في كل ما اقوم به يارب ان كان هذا العمل شر لي في ديني ودنيائي فاصره عنني و اصرفني عنه و اكتب لي الخير حيث كان . نعم استاذ ...

الفرنات 1 أثناء التفكيك

ثم بعدها بدات في صناعة منصة الاطلاق وهي عبارة عن قاعدة معدنية تتكون من أربعة قضبان حديدية متقاطعة
على شكل + طول كل منها نصف متر كما يخرج من وسطها قضيب معدني يشكل متعايد يكون طوله حوالي 2 متر أو ضعف طول الصاروخ، وقد راعيت فيها خصائص التفكيك والتركيب عند الحاجة بحيث عندما تكون مفكرة تكون عبارة عن قضبان عادية لا تأخذ أي اهتمام.

الانطلاق الى الطلق

اود ان لا طيل عليكم ايها السادة ابها السادة مر فصل الربيع وفاز فصل الصيف بالضبط يومه 13 من يوليو 2008 كان يومه السبت عشية كانت السماء هادئة و بها غيوم خفيفة و كنت اتاحت اليام التي يكون فيها الرياح متحركة لان هواة الصواريخ يحذرون من اطلاق الصاروخ وسرعة الهواء تتجاوز 20 كم في الساعة، في الفترة الصباحية كنت اجري بعض التعديلات كما ذهبت لكارة الكلي تصوير كبيرة من عند احدى مختبرات التصوير هناك في المدينة، كنت من النوع الذي يسجل فوق شريط مغناطيسي صغير الحجم، يعني يمكن ان تسجل ساعتين بدون توقف كما انها مزودة بتقنية الزووم بغرض تقريب و ابعاد الاشياء من خلال عدستها، كان ام الكراء خمسون درهما، بدات الاستعدادات دخلنا أنا و ابراهيم مرحلة العد العكسي.

تناولنا غذاتنا ثم قمنا بوضع الاشياء الطويلة في كيس ازرق من النوع الذي يخزين فيه الشعير أو الحبوب بصفة عامة، اما الاشياء القصيرة فقد وضعناها داخل علبة كرتون ووضعنا الكل على الدراجة النارية، قاصدين دوار الدير أو "ابعير" ان صح التعبير وهو مكان يبعد حوالي 12 كم
جنوب العيون وهو الدوار الذي رأيت فيه النور و ترعرعت فيه و الاحداث التي ذكرتها في صفحة التمثيلات الطفولية في الواقع قد وقعت هناك بالضبط ، وهذا العمل ما هو الا تتمة لاحلام ذلك الطفل الذي كان يغمغم بين الصخور يعني نوع من الوفاء بالوعد ان صح التعبير، ركبنا الدراجة ثم انطلقنا على بركة الله قاصدين محطة الاطلاق الفضائية الخيالية و الخالية والخلائية، المهم غي الخلاوات. بعد ساعة او اقل وصلنا الى المكان المنشود هو عبارة عن ارض توجد في ملكيتنا وهنا كونها الدراجة لم يكن هنا احد ، كان المكان خاليا تماما من الناس ماعدا بعض الاغنام كانت ترعى بعيدا وكن جبل ريش الحمام يغطي تقريبا نصفها او يزيد بظهره القاتم ومن بعيد تظهر جبال بني يزناسن وهي مكسوة باغابات الأرز كانت جبالًا ذات شموخ اسطوري لونها ازرق وỌكانها تتماها مع لون السماء وهي الرائقة في الأرض ، فيما يخص الجو فقد كان غائما وكان تاليا قوية مع الامور الشديدة بحيث صارت عملية الاطلاق ولكن لا تستطيع الرجوع هكذا نحن جننا لكي نطلق وسنطلق مهما كانت الظروف ، اخراجنا الكاميرا و كلفت ابراهيم بالتصوير فقط، تصوير كل شيء منذ البداية حتى النهاية ، جلس قريبا، و بدأت انا في اخراج المعدات و تركيب اجزاء الصاروخ جزءا جزءا ... وكنت تحدث من حين لآخر على شكل تقرير ووصف لما اقوم به وكنت قد احضرت معى كاميرا السيد ريتشارد ناكا و كنت النقط من حين لآخر صورا ثابتة ، المهم لم تمر الا ساعة حتى كان الصاروخ واقفا في شموخ واصرار طبلت من ابراهيم ان يلتقط لي بعض الصور مع الصاروخ و كانت احداء صورة
الإطلاق}

لحضات قبل الإطلاق
وقمت بتركيب الكل قضبان الوقود ثم الصاعق و اخراج الاسلاك التي تبعد أكثر من عشرة امتار و كانت البطارية في الجيب صراحة لقد حسني الخوف الشديد من اتمام العملية ، صرت اسير جيئة وذهابا اتفحص الصاروخ اتفحص الاسلاك ، الكاميرا ، طلبت من إبراهيم ان يوقف التصوير لبرهة ثم دخلت في حوار مع نفسي حول هذا الجين الذي يعرقلني عن ضغط الزر ، قمت بعملية استرخاء او نوع من التأمل في كيفية التقديم امام الكاميرا قبل الاطلاق تذكرت الآية في سورة الرحمن يا معشر الجن و النس ان استطعت ان تتفحصوا من اقطار السمواوات والأرض فانغفو لا تتفحصوا الا بسلطان ، قمت باختيار مكان وراء شجرة الشوك او السدرة اخطبها من شضايا اي انفجار محتمل ثم قمت بتشغيل كاميرا السيد ريتشارك وهنا وقفت وقلت لابراهيم ان يركز الكاميرا على الصاروخ لا يوجد عنه بعدسة الكاميرا مهما حدث ، ثم بعدها وقفت امام الكاميرا معنا عن لحظة الاطلاق مستعينا بالآية المذكورة فوقه ثم ختمت الكلمة بعبارة " تابعوا معنا عملية الاطلاق " رجعت الى المكان المحدد ثم استنقيت على الأرض و بسم الله ضغطت الزر قلبي يدق بشكل منعني من سماع ما يدور هناك اسلف الصاروخ ، صغير حاد اخترق الآذان قبل ان ينتشر في الارجاء انطلق الصاروخ الى السماء في سرعة البرق ارتفع مقدار عشرون مترا حتى رأيته بميل الى جهة الرياح لقد صعد ولكنه وجد الرياح القوية في انتظاره ، ما هي الا ثواني حتى ابتد عنا ثم فجأة حدث امر لم اتوقعه لقد رأيت شيئا ينفصل عن جسم الصاروخ وعاد الى الأرض وهنا فقد الصاروخ توازنه وصار يدور و يدور في الجو ثم هو الى اسفل ليسقط بعيدا في الوادي المجاور ، الشئ الذي سقط منه هو احد الاجنحة تذكرت إني لم اثبت مكانه الذي يلتصق فيه بشكل جيد
ونسيت تثبيته باحكام وها هو يطير من فوق جسم الصاروخ لانه، وإذا حذف احد الأجنحة فان مركز الضغط يلتزم مع مركز الكتلة وبالتالي يدور الصاروخ كما يدور اي عمود مقذوف في الهواء، صراخ عالي وفرحة عارمة وحماس وقاد اجتاحني رغبة عارمة في الطيران، و لم أشعر الا وانا اجري باقصى سرعة في اتجاه مكان سقوط الصاروخ.

الفرناس 1 لحظة انطلاقه

الرابط لمن اراد مشاهدة فيديو تجربة الاطلاق
https://www.youtube.com/watch?v=O-EGNUk2SxE
لما وصلنا إلى الصاروخ وجدناه قد تحول إلى شظايا جراء سقوطه الحر على صخور، طلبت من إبراهيم تشغيل الكاميرا وهنا بدأت أصف التجربة بشكل حماسي مع الإشارة بأن الأمر يتعلق بخطأ تقني وان تجربة الطلق كانت ناجحة على العموم، وكما عاينت المحرك ووجدت انه لم يصب بالاضرار إلا الجزء الآخر فقد "تفرشخت". أما الجناح فقد وجدنا بعيدا منفصل، وقد تبين انه كام مثبت بالغراء فقط، لقد نسيت تثبيته باللوالب... هاك يا النازا هااااااااك.

الجناح بعد انفصاله من جسم الصاروخ
هواية الصواريخ

بقايا الصاروخ بعد تحطمه

محرك بعد عودته من تجربة الإطلاق
هواية الصواريخ

المهم بينما نحن في دهشة التجربة رأينا أحد السكان قد جاء مسرعا إلى جهتنا ولما اقترب منا توقف عن بعد واقتفى بالنظر، لم يكن يعرف من نحن، أو ما كنت نقوم به، لما تفرست في سحنته تبين لي أنه شاب من من أحياء العائلات تسكن هناك في الدوار وبالتالي معرفته ابن من هو فناديت عليه هل انت ابن فلا ن فقال نعم وسألته هل يعرفنا فاجاب بالنفي وقلت له أنظر إلى تلك الأطلال في سفح الجبل لمن هي؟ فقال هي لبني فلان قد رحلوا منذ زمن بعيد فقلت له اني قد ولدت هناك في تلك الدار، وكانت تلك الأطلال دارا عامرة تج بالحياة والحركة والنشاط، حياة بحلوها ومرها كانت هناك... الآن خمد كل شيء وطويت تلك الحياة بين صمت النهار وظلمة الليل... أه فاستنادا واقترب منا وسلم علينا وبدات اسرد عليه اسماء الجبال هناك وأسماء السهول بتفاصيلها الدقيقة و الوديان و الهضاب بطبيعته الحال باللهجة الامازيغية، وقلت له ان الأمر يتعلق باطلاق صاروخ، ويبعد أنه لم يكن يعرف الصاروخ أصلا...

طلبت من إبراهيم ان يجمع شظايا الصاروج ولا يترك شيء هناك، كان بدوره يلتقط بعض الشظايا ووضعها في كيس، لما انتهينا وضعتنا الأكاسيا فوق الدراجة ثم ركنا وقلنا راجعين، كما العادة كنت ارتسم اناشيد من وحي النجاح والانتصار، وكان خيالي يسبح بعيدا إلى درجة اني صررت اعد نفسي في مصالح كبار العلماء مثل هايزنبرغ أو ثرنر فون براون أو غيره... في الحقيقة لم اكن ا سمح لهذه المشاعر ان تلتقط في الذهن فانا مجرد أنسان عادي أو اقل من عادي في عرف الناس فانا مجرد شاب لا يعرف مصلحته و يصير في طريق الفشل من حيث تحصيل الوظيفة و جمع الفلوس و بناء الدار والزواج... وهم محقون في ذلك على كل حال المهم وصلنا إلى الدار كما العادة أعلنا اننا قد حققنا ما كنا نصبو اليه، انتشرت موجة من الفرح داخل أفراد الأسرة، اما انا اسرعت إلى الحاسوب و كتبت خبرا قصيرا إلى السيد ريتشارد ناكي معنا
عن نجاح التجربة، ثم بعدها اخذت الكاميرا إلى المختبر وطلبت منه تحويل محتويات الشريط إلى قرص مدمج، وطلب مني الرجوع في المساء، وعدت إليه واحضرت القرص ودخلته الحاسوب وبدأت في مشاهدة الفلم الذي تكون لدينا فيلم مكون من 45 دقيقة أو يزيد يصور عملية تركيب الصاروخ من البداية إلى الاطلاق، يعني الفلم يختصر ثلاث سنوات من العمل والتجارب الناجحة والفشل في تتويج هذا العمل كله يختصر في لحظة صغير يشق به الصاروخ الفضاء، الفضاء لأن هنا لم يعد عذريا كما كنت أراه فيما قبل. المهم أيها السادة قد نسخت العديد من الأقراس وكانت أوزعه على الأصدقاء والمعارف، كان الجميع يهنئ و يبارك و يسأل الله التوفيق، أحد الأصدقاء أو المعارف أن صح التجربة شاهد الفلم ومن بعد قال لي أن ما قمت به لشيء جديد علينا وهو عمل كفيل به أن أفكر أن يرفعك إلى المقامات العالية أو قد يهبط بك إلى أسفل سافلين، واجبته مازحا أنه لن يكون هناك شيء مقامات عالية ولا دركات سفلية وذالك ما كان. وبعدها جاءني رد السيد ريتشارد مهنيته وعطائه عبارة التي لازالت تحضرني مرحبا بك في نادي هواة الصواريخ شعرت بالفخر والامتنان، كانت عبئته بمثابة وسام ونياشين أعلقته على صدر، وكانت كلاما صررت في المدينة إلا واجد الانتظار تحققه اليد الشأبه يعلم بقصة الصاروخ سواء عبر الإنترنت أو عبر الأخبار الشفاهية أو غيرها وحتى السلطات باتت تعلم بامر الصاروخ، ولكن كما قلت سابقا اذهب بعيدا واتلقى ما تشاء إلى الفضاء، فمادامت الأمور بعيدة عنهم فهم بعيدون عنك.
و الله المستعان.
الفصل الثاني

التاريخ في استعمال الصواريخ
0.2 أولى البدايات

1.2 - اركيطاس دو تارانت

يجمع مؤرخو العلوم أن أول استخدام لمبدأ رد الفعل الناتج عن قوة البخار يرجع إلى عصر اليونان وذلك على يد أحد العلماء يدعى (اركيطاس دو تارانت) الذي عاش ما بين 435 ق.م و 347 ق.م في مدينة تارانت اليونانية آنذاك، وهي حاليا مدينة في الجنوب الإيطالي، حيث أنه قام بتركيب إوزة من الخشب كان يعلقها بأسلاك ثم يحركها عن طريق البخار المنبعث منها و المؤرخون لم يذكروا كيف كان يسخن الماء في جوف هذه الأوزة الخشبية لتعطي تلك الحركة التي كانت مثيرة للعجب آنذاك.

2.2 - هيرون السكندري

ثلاثة قرون بعد ذلك، قام هيرون السكندري وهو مخترع يوناني كان يعيش في مصر زمن البطالمة ما بين سنة 70 ق.م و 10 م ، باختراع "الأيلوبيل" وهو محرك يدور تحت تأثير البخار المندفع من منفذين متعاكسين. بحيث أنه عند تسخين الماء في مرجل المحرك يصعد البخار عبر ساقين مغوفين ثم يجتمع البخار داخل فلكة و يخرج عبر الأنوبوبين المكوعين - (كما هو في الشكل) -
تحت تأثير رد الفعل تدور الفلكة
بسرعة مادام الماء و النار متوفرين ،
ولكن المسألة التي تحير مؤرخو
العلوم هو لماذا لم يدفع بهذا الاختراع
إلى الإمام قصد استغلاله في تطبيقات
ميكانيكية أخرى كانت ستعمل من
تقدم البشرية عشرة قرون على الأقل

3.2- الصينيون

نعم حضارة الصين قديمة جداً، في القرن الثالث قبل الميلاد كانوا يملؤون سيقان شجرة البامبو ب الخليط
مكون من ملح الصخر، (نترات البوتاسيوم) وكمية
من الكبريت ومسحوق الفحم ثم إشعالها خلال
الاحتفالات الدينية معتقد أن أصوات الانفجارات
التي يحدثها الخليط تطرد الأرواح الشريرة، و يحدث
في بعض المرات أن تلك السيقان لا تنفجر بل تندفع
إلى الأمام تحت تأثير رد الفعل الناتج عن ضغط الغاز
الناتج عن تفاعل نترات البوتاسيوم و الفحم و لكن لا
إحد يعلم اسم من كان وراء تطوير هذا المبدأ اللي
يخترع البندقية و المدفع و الصاروخ.

بِحِيْثْ كَانَتْ هَذِهِ الْأَسْلَحَةِ أُقْتَلَتْ الخدمة الفعلية لدى الجيش
الصيني منذ 1045م و هو ما تؤكده الوثائق التاريخية، حيث تورد
بعضها عبارة "الأسهم الناريّة" و هوالعبارة التي قد تحلل على
معنيين:

إما أنهم كانوا يقصدون بها الصواريخ بعد ذاتها.
أو كانوا يقصدون بها سهم يحمل مواد مشتعلة تطلق على أهداف العدو.

ومنذ بداية القرن الثالث عشر تزايدت تهديدات الغزو المغولي، و هو ما دفع السلاطين الحاكمة يومئذ سونغ إلى الاعتماد على التكنولوجيا العسكرية الجديدة لمواجهةها، و هو ما دفع المهندسين الصينيين من ابتكار أشكال جديدة من الأسلحة مثل القنابل اليدوية والمدافع والصواريخ التي استعملت بشكل واسع في معركة "كاي-فونغ-فو" سنة 1232 م.

وقد جاء وصف الصواريخ من قبل المبشر الفرنسي "بيير أنطوان جوبيل" في كتابه "تاريخ جنكيز خان و الأسر المغولية التي هزمت الصين" (1793)، كما يلي:

"... و عندما أشعل الصينيون سلاحا ناريا جديدا سمع له صوت كالرعد من مسافة 15 ميل و عند سقوطه على الأرض فإن مساحة تدميره تجاوزت ألفي قدم في كل الاتجاهات ...". ربما كان الصينيون يملؤونها بالمواد الحارقة وقطع الحديد للحصول على هذه القدرة التدميرية الواردة في الوثيقة.

كما أوردت الوثائق عبارة "الجرة الحديدية" في وصف مكونات هذه الصواريخ، فمن المحتمل أن تكون هذه الصواريخ قد احتوت أول غرفة احتراق لتوليد الدفع الناتج عن البارود الأسود الذي يستعمل كوقود دافع.

1.4.2 استعمال البارود:

واستمد المسلمون من الصين ابتكاراً أضافوا إليه وحسنوه، فأحدث هزة في العالم بمعنى الكلمة: وتعني به البارود.

وكان الصينيون يستعملونه في صورة طلقات متوهجة أو قليلة لتكريم الموتى ! أما المخترع العربي فيぶり أنه أدرك فكرة الاستفادة على نحو آخر من هذه المادة ذات الخاصية المتفجرة،
وهكذا استحدث العالم الإسلامي أسلوباً أفضل لاستعمالها بضغطها في صورة مدفع توالى تحسينه حتى صار رائد المدفعية الحديثة.

ويضيف المستشرق (ستانوود كب) قائلاً: تعلم العرب من الصينيين صناعة البارود، ولكن جاء استعمالهم له على نحو مختلف لما كان يخطر على بال الصينيين، فلقد وضعوا موضع التوجبة فكرة إمكان استخدام قوة انفجار البارود في إطلاق قذيفة من خزانة مغلقة، ويدعى أن أول مدفع صالح للعمل قد صنع في مصر حوالي القرن الثاني عشر الميلادي، وكانت صناعته من الخشب الذي تربطه دعائم معدنية، ويценف أحجاراً مستديرة، وفي منتصف القرن الخامس عشر أدخل المسلمون تحسينات على المدفع أمكن معه استخدامه في حصار القسطنطينية واحتلالها.

وفي معرض حديثه عن تراث مصر العلمي في العصر المملوكي، قال الدكتور عبد الرحمن زكي: ولا يخفى أن البارود كشف مملوكي ينسب إلى نجم الدين حسن الرماح المصري الذي عاش في النصف الثاني من القرن الثالث عشر وعنوان مخطوطه الذي ذكر فيه قائعة البارود (كتاب الفروسية والمناصب الحربية)، وأشار إلى نسختيها المحفوظتين في دار الكتب الوطنية بباريس.

ووصف نجم الدين الرماح في كتابه الفروسية، تركيب قنبلة المدفع بأنها تتركيب من: الملح، والكبريت المسحوق، ورماد الفحم، والبرادة، والشادر، والزرين الأحمر، والتيلة الزرقاء.

ونقل العرب إلى إسبانيا ابتكارهم: الأسلحة النارية للدفع، المستخدمة لمادة البارود، حيث استخدمها لأول مرة هناك في معركة طريفة سنة 741/1340 سلطان بني مرين أبو الحسن علي بن أبي بعقوب، ومعه أبي الحجاج يوسف، في قتال قشتالة وحلفائها، قبل أن يطورها الفرنسيون والإيطاليون.

ويؤيد الاستاذ يوسف أشباخ معرفة الموحدين لهذا السلاح الجديد (البارود) بقوله: إن خلفاء عبد المؤمن من الموحدين، هم الذين نقلوا استعمال البارود في القرن الثالث عشر من أفريقيا إلى إسبانيا، وأن استعمال الألّة القاصفة التي تذف الكرات الملتهة، شاع بين مسلمي و
٢.٤.٢ استخدام قذائف النار الإغريقية:

يقول (رينو): إن العرب لما أغاروا من الأندلس على جنوب فرنسا وفتحوا بقيادة السماح الخولاني، وعنبرة الكلبي، والحر النقفي، مدايين أربونة، وفرقشونة، وأفننيا، وليون، كانوا مجهزين بأسلحة لم يكن للإفرنج مثلها.

وقال (روفول) في تاريخ الجيش الفرنسي: اقتبس الغربيون من العرب في الحروب الصليبية - أصول نسف حصون المدن، كما أخذوا من العرب طريقة استعمال النار اليونانية (أي الصواريخ) وقد استخدمها صلاح الدين في حصار عكا سنة ١١٩٠ م.

ووصف ابن الخطيب في كتابه (اللمحة البدنية) المدفع الذي استعمله الغزاة عند احتلالهم (قلعة أشكر) عام ٧٢٤/١٣٢٤ وما أحدثه هذا السلاح من ذعر في صفوف القشتاليين، وهذا الوصف يعتبر من أقدم النصوص التاريخية حول استعمال المدفع.

وتأيد المصادر الإسبانية هذه الأخبار، وتشير إلى هذا المدفع كسلاح جديد رهيب، ويؤكد بأن ملك غرناطة يمتلك سلاحاً جديداً مبدياً؛ أي أن مسلمي الأندلس قد توصلوا إلى استعمال المدفع قبل أن يتوصل الأوروبيون إلى استخدامه.

وينقل الدكتور الطوخي أن كلمة نفط تعني قذائف النفط أو قذائف النار الإغريقية، ثم تطور معناها بحيث أصبح يعني الأسلحة النارية أو البارود؛ وكانت هذه الأسلحة لا تحدث نارا عند انطلاقها، وإنما كانت تحدث رقعة وهديراً، ولهذا سميت بصواعق النفط، وصواريخ النفط، وكانت قدأفعها كوراً معدنية أو حجرية، ويسمى المشرفون على إطلاقها بالنفطية أو البارودية؛ ومن هذا نرى أن كلمة نفط كانت تطلق على مدافعين مختلفين: أحدهما يتصال بالقوارير والقدور وهو الذي يشعل النار، والآخر يعني المدافع والمكاحل ولا يسبب ناراً وإنما هدماً وتحطيمًا.
ووصفت قذيفة النار الإغريقية التي استخدمها المماليك في حروبهم البرية والبحرية، وخصوصاً في معاركهم مع المغول، بأنها أسطوانة نحاسية ذات فم طويل يوقد منها مزيج تمثل به الأسطوانة يتركن من النفط والزيت والكبريت المجمد بالصمغ القابل للإشعال.

ويصور لنا (جوستاف لوبون) حالة الفزع والرعب التي أصابت الصليبيين بعد استخدام العرب النار اليونانية حيث يقول:

وعرف العرب تركيب النار اليونانية وبلغت هذه النار من الانتشار عندهم ما صارت معه (عامل الهجوم المهم) وتفنن العرب في استخدامها، والقذف بها بشتى الطرق، وليس بجهل خبر الروع الذي ألقته في قلوب الصليبيين، فورد ذكره في أحاديثهم، ومن ذلك أن أعلن (جوانفيل) - الذي اشترك في معركة المنصورة- أنها أفعى شيء رأته في حياته، وأنها ضرب من التنانين الكبيرة الطائرة في الهواء، ولما أصبح (جوانفيل) في جوار الملك (سان لويس) ركع ورفع يديه إلى السماء وقال باكياً: أي ربنا يسوع احفظنا واحفظ قومنا.

5.2 القرون الوسطى

وفي جرأة نادرة قام أحد العلماء الصينيين يدعى "فان-هو"، وكان معاصراً للرحلة كريستوفر كولومبوس، ببناء أول مركبة تعتمد الصواريخ في الدفع حيث إنه قام بتركيب سبعة وأربعين صاروخ إلى كرسي مزود بأدوات قيادة وجلس هو شخصياً على الكرسي كرائد فضاء، وطلب من عمله إشعال الصواريخ السبعة والأربعين، وما هي إلا ألحظه حتى وقع انفجار هائل، ووميض خاطف ودخان كثيف، واحتفى على إثرها العالم "فان هو" عن
أنظار عماله ليس لأنه طار إلى الفضاء و لكنه تحول إلى أشلاء

ففعل الانفجار المدمر.

وهي قصة مشابهة لقصة العالم الأندلسي المسلم "عباس ابن فرناس" وانتشرت فكرة الصواريخ في أوروبا و استعملت في معارك بين الدول المتحاربة وقد جاء في كتاب فرنسي (القذائف و الصواريخ) عام 1561 كيفية صناعة صاروخ طوله متر. كما أورد كاتب آخر يدعى "كونراد هاس" و كان مسئول تسليح في جيش ولاية سيبوي (جزء من رومانيا الحالية) مابين 1529-1569 حيث وضع رسما لصاروخ ذو رأس مخروطي و جسم و زعانف تشبه إلى حد كبير تصاميم الصواريخ الحديثة.

خلال القرون التالية تطورت وسائل أخرى مثل البنادقية و المدفع و زادت دقة إصابة الأهداف و فعاليتها في المعارك أدى بطبيعة الحال إلى أن توارت الصواريخ من اهتمامات العسكريين و بقيت شبه منسية إلى غاية منتصف القرن التاسع عشر لتظهر الصواريخ من جديد في كتابات أدباء الخيال العلمي أمثال كل من "سيرانو دو بيرجيراك" و "جول فيرن" و "ه.ج.ويلز"، ليس كسلاح هذه المرة ولكن كوسيلة نقل إلى الفضاء الخارجي.

الصواريخ خلال القرن العشرين.
خلال بدايات القرن العشرين كان الفضل لثلاثة رجال في تطوير علم الصواريخ و بناءه وفق أسس رياضية و فيزيائية صرفة مستعينين سواء بالمعادلات الرياضية والقوانين الفيزيائية التي وضعها علماء سابقون، وخصوصًا قوانين إسحاق نيوتن، أو قاموا أنفسهم بوضع هذه القوانين والمعادلات. وقد خرجوا من الميدان النظرى إلى مراحل التجربة والاختبار يتعلق الأمر بالروسي "قسطنطين تسولوكوفسكي" (1857-1935).
و الألماني "هيرمان أوبيرث" (1894-1989).
و الأمريكي "روبرت كودارد" (1945-1882).
هناك عالمين آخرين هما الروسي "سيرجي كوروليف" (1907-1966) والألماني "ثرنر فون براون" (1977-1912) (نقل إلى الولايات المتحدة بعد الحرب) و إن كان هذين قد قاما ببناء البرنامجين الفضائيين في كل من الاتحاد السوفيتي سابقا و الولايات المتحدة في الخمسينات من القرن الماضي.
و استطاعا إيصال الإنسان إلى الفضاء الخارجي بواسطة الصواريخ و المركبات الفضائية التي صنعاها في سباق فضائي محدود بين الدولتين العظمتين في تلك الفترة.
سنقف ميلا عند كل هؤلاء الثلاثة لنرى تأثير كل واحد منهم في تاريخ الصواريخ:

1.6.2 قسطنطين تسولوكوفسكي.

"صحيح أن كوكب الأرض هو مهد الإنسان ولكن الإنسان لن يستطيع العيش في مهد إلى الأبد"
1.1.6.2 حياته:

ولد في 17 سبتمبر 1857 في قرية "إيجيفسكو" التابعة لولاية "رابيان" الروسية من أبي بولندي كان حارس للغابة، ولد قسطنطين وسط عائلة فقيرة و كثيرة الأفراد (حوالي 17 فردًا) وفي سن العاشرة فقد حاسة السمع اثر إصابته بالحمى الصفيرة وهو ما حرمه من متابعة الدراسة، لكنه دأب على تعليم نفسه بنفسه، وقد طالع جميع الكتب التي كانت في خزانة أبيه. خلال الفترة الممتدة بين 1873 و 1876 انتقل إلى موسكو وهو ما مكنه من إرواه عطشه المعرفي من جميع المكتبات فيها و خصوصا مكتبة دار "باشكوف" الشهيرة ومن أن يلتقي بالفيلسوف الألمني الروسي "نيكولاي فيديروفيتش فيديروف" الذي كان يشغلي بالمكتبة الوطنية. وتأثر بمحاضراته ثم الاشتغال في المكتبة الوطنية و بعدها أستاذا محاضرا في الجامعة، وهي التي لم يدخلها قط في حياته، وفي سن السابعة عشر بدأ يفكر في إمكانية السفر إلى الفضاء، و مما لاشك فيه أنه تأثر بروايات "جولي فيرن"، وبدأ يهتم بالمشاكل الهندسية للمراكب الفضائية، لأن عرضه لم يكن سفر الإنسان فقط إلى الفضاء الخارجي ثم العودة ولكن عيش الإنسان هناك لكي تصبح الحضارة البشرية حضارة فضائية على حد تعبيره.

خلال الفترة 1876 -1879 عاد لمنزل العائلة ليشتغل أستاذا لمادة الرياضيات في "بروفوسك" بعد تجاوزه لامتحان الحصول على شهادة الأستاذية بنجاح، وقد عاش هنا إلى غاية 1892 حيث تزوج وأنجب مع زوجته باربرة سبعة أبناء، وقد انهمك خلال هذه الفترة على إجراء أبحاث حول بناء البالونات الهوائية والحياة خارج كوكب الأرض و ديناميكا الفضاء و الفلسفة، ثم انتقل بعدها إلى منطقة "كالوكا" ليعيش هناك بقية حياته في منزل هو الآن
هواية الصواريخ

متحف للزوار. وخلال هذه الفترة أصبح أكثر شهرة وكتب معظم نظرياته حول الفضاء، وسفن بين الكواكب، كما كتب فلسفته الفضائية وقام بالتنظير للمستقبل البعيد للحياة البشرية في الكواكب الأخرى مؤكدا أن كوكب الأرض هو حقا مهد البشرية ولكن لا أحد يبقى أسير مهد بل يغادره إلى ما هو أوسع وأرحب عندما يصير قادرا على ذلك.

و في سنة 1919 عين عضوا في الأكاديمية السوفيتية للعلوم. وسنة بعدها تلقى معاشا تقاعديا من الحكومة السوفيتية. و بعد أعمال "هيرمان أوبيرث" الألماني أصبحت كتاباته أكثر انتشارا ونالت اعترافا وتقديردا دوليا، كتب قسطنطين ما يزيد عن خمس مائة كتاب وبحث و مقال في مجال الصواريخ و فعاليتها في غزو الفضاء، ومن المهم الإشارة إلى انه لم يقم بتركيب أو تصنيع أي من الصواريخ كما هي عادة العلماء ولكن لهذا الزخم من الكتابات دور أساسي في خلق ثقافة فضائية جديدة لدى جيل من المهندسين العلماء الفضائيين وخصوصا العلماء الروس الذين جاءوا من بعده ونخص بالذكر العالم "سيرجي كوروليف"، الذي كان يعرف بالمصمم الرئيس داخل أروقة المعامل ومعاهد الفضاء السوفيتية، حيث بفضل نظريات و أفكار تسولوكفسكي استطاع هذا العالم من إطلاق أول قمر صناعي "سبتنيك 1" ثم إصلاح كائنات حية "الكلية لايكا" نحو الفضاء الخارجي ثم الطيار "يوري كاكارين" كأول رائد فضاء في تاريخ البشرية.

توفي العالم قسطنطين تسولوكفسكي يوم 15 شتنبر سنة 1935 عن عمر يناهز 78 عام حياة حافلة البحث والتنظير لعلم كان بحق أحد رواده الأوائل.

2.1.6.2 أعماله:

ووضع الأسس النظرية لتحديد سرعة تنقل الصواريخ وتعرف المعادلة التي قام بتقديمها سنة 1903 باسمه و التي صيغتها أن سرعة الصاروخ في لحظة ما تساوي جداء السرعة البدنية في لوغاريتم نسبة الكتلة البدنية إلى الكتلة النهائية عند هذه اللحظة.

77
هواية الصواريخ

و تعبيرها الرياضي كما يلي:

\[
v = C \ln \left(\frac{m_0}{m_f} \right)
\]

ومن أهم كتاباته في مجال الفضاء و ليس على سبيل الحصر:
"استكشاف الفضاء الكوني بالآلات ارتضادية" (1903).
"خطة غزو الفضاء" (1926) وهو كتاب يحتوي حوالي 16 نقطة تبين مختلف مراحل الغزو الفضائي الناجح ثم استيطان المجرات البعيدة و بروز حضارة فضائية جديدة.
"فوق القمر"(1895).
"أمل السماوات والأرض"(1895).
"خارج الأرض"(1920).
"القطارات الصاروخية الفضائية"(1929).
"الإلهام السماوات والأرض"(1932).

وهم خارج مجال الجذب الأرضي و الغلاف الجوي و كيفية بناء حدائق نباتية فضائية يستفيد منها رواد الفضاء قصد توليد الأوكسجين الضروري لتنفسهم و امتصاص غاز ثاني أكسيد الكربون الذي يطرحونه.

2.6.2 هيرمان اوبريث.

نبوعة الوالد: ذات مساء من أمسيات شهر يوليو عام 1869 في احتفال في إحدى حدائق سيبوي في رومانيا همس الشاعر والفيلسوف الدكتور "فرديناند كراسر" في أذن أحد أصدقاءه قائلا:
"صدق أو لا تصدق إنني مقنع بأن الإنسان سيكون بمقدوره النزول على سطح القمر بعد مائة عام من الآن .."
١.２.٦.٢: حياته:

اسمه الكامل "هيرمان جوليوس اوبيرث" ولد في ١٨٩٤ م في مدينة صغيرة تسمى "ترانسيلفانيا" تابعة لولاية "هيرمانشتات" في رومانيا حاليا.

عند السنة الثانية من عمره انتقلت عائلته إلى مدينة "شاسبيرج" اثر تعين والده مديرا لمستشفى المدينة، نشأ غريب الأطوار، قبل سن السابعة بدأ يقوم ببعض الابتكارات و قام بتركيب عجلة مائية كبيرة. أما ابتكاره الثاني فهو انه قام بتجميع مصابيح المعمل و الاحتفاظ ببطاقتها قصد استخدام عند الحاجة.

بدأ اهتمامه بالصواريخ في سن الحادي عشر عندما أهدته أمه كتاب لجولي فيرن عنوان "من الأرض إلى القمر " وهو الكتاب الذي أعاد قراءته ست مرات إلى أن حفظه عن ظهر قلب، ويبدو أن هذا الكتاب قد أيضق فيه نزعة العلم و المعرفة في مجال لازال يخطو خطواته الأولى. وقد تبين له أن الحسابات التي جاء بها فيرنس في كتابه ليست اعتباطية بل هي حسابات سليمة و تعبر عن تفكير علمي ثاقب و هو ما يعني مصداقية علمية للكتاب أكبر مما كان يعتقد العلماء في تلك الفترة.

في سن الثالث عشر قام بحساب قوة القصور التي سيتعرض لها الإنسان في حالة وضعه في برميل مقدف بواسطة مدفع وجد أنها تفوق قوة الجذب الأرضي ب47 ألف مرة" و علق على ذلك بان قال" بلا شك سيتحول إلى قطائير... " ومنه فان المدفع غير صالح.

و صدق نبوءة الرجل، ففي شهر يوليو عام ١٩٦٩، أي بعد مائة عام بالضبط، استطاع البرنامج الفضائي الأمريكي إيصال كل من الرائد "نيل ارميسرون" و "بيز الدرين" إلى القمر والسير على سطحه.

و بعد خمسة و عشرون سنة من هذه النبوءة ولد لهذا الرجل ابن سماه "هيرمان اوبيرث" الذي سيصير أحد المؤسسين الأوائل لعلم الصواريخ مساهمًا في تحقيق نبوءة والده.
لاستخدامه كوسيلة للدفع إلى الفضاء الخارجي. وقد توجه تفكيره إلى الصاروخ وهو ما دفعه إلى القيام بتجربة حيث أنه وضع الحجارة في زورق تجديف وركب فيه في النهر وبدأ يقذف بتلك الصخور إلى الخلف فيندفع الزورق إلى الأمام وهو ما أعطاه فكرة حول الكيفية التي سيتخذها اندفاع الصاروخ، وبعد استشارة مجموعة من الخبراء في مجال الأسلحة والدفاع في مدينته تبين له أن البارود الأسود لن يكون فعال في إرسال صاروخ إلى الفضاء الخارجي، ثم خمن أن الأوكسجين والهيدروجين السائلين هما أقوى مادة يمكن أن تعطي الدفع للصاروخ.

في سنته الرابعة عشر قام بالتنظير للصاروخ الذي يعتمد قانون الفعل ورد الفعل في تنقله في الفضاء وذللك عن طريق دفع الغازات إلى الخلف، ولكنه لم يتوفّر على الإمكانيات المادية لإجراء تجاربه واكتفى بتطوير نظرياته وتعليم نفسه عن طريق مطالعة الكتب بما في ذلك كتب الرياضيات التي يعتقد أنه سيحتاجها يوما ما في التخلص من الجاذبية الأرضية، وقد استنتج أنه كلما كانت نسبة كتلة الوقود إلى كتلة الصاروخ كبيرة كلما زادت سرعته في التنقل لكنه تبين أن هناك مشكل يعترض هذا الطرح، تناقص كتلة الوقود تدريجيا مع الوقت تحت تأثير الاحتراق في حين تبقى كتلة جسم الصاروخ ثابتة، وهو ما يؤدي إلى انخفاض نسبة كتلة الوقود إلى كتلة الصاروخ بالتالي يصبح الصاروخ ثقيلًا و غير قادر على الحركة. وقام بإيجاد حل مناسب و يتعلق الأمر بالصاروخ ذو المراحل حيث يتم تركيب مجموعة من الطوابق الصاروخية بعضها فوق بعض بحيث تكون كتلة الطبقية الأفقية أقل من كتلة الطبقية السفلية وعندما ينتهي دور المرحلة السفلية يتم التخلص منها، فتصد اقتصاص الطاقة، ثم تشغيل الطبقية التي فوق و هكذا بهدف الحفاظ على سرعة الصاروخ. في عام 1912 التحق بجامعة "ميونيخ" لدارسة الطب، غير أن دراسته لم تستمر طويلًا لأنه التحق بوحدات الجيش كمسعف طبي عند اندلاع الحرب العالمية الأولى وقد قال في إحدى كتاباته أنه اقتنع من خلال
هواية الصواريخ

هذه التجربة بالعدل عن رغبته في أن يصبح طبيبا دكتورا .. و لما وضعت الحرب أوزارها عاد إلى الجامعة لكن هذه المرة لدراسة الفيزياء تحت إمرة العلماء المرموقين في تلك الفترة.

1918 تزوج أمها تسمى " ماثيلد هاميل " وهي التي شجعته و دعمته في مواجهة التحديات كعالم شاب طموح يسعى لتحقيق حلم البشرية لغزو الفضاء.

1922 قدم أطروحة دكتوراه مرة أخرى في علم الصواريخ لكن اللجنة المختصة رفضت موضوع الرسالة بدعوى أنها مغرقة في الخيال واليوتوبيا. وقد علق عن هذه الواقعة قائلا: " لقد توقفت عن الكتابة في نفس الموضوع ... و قلت مع نفسي لا باس سأسعى لأن أكون عالما أكبر منكم حتى بدون لقب دكتور..." و استمر قائلا:" في الولايات المتحدة عادة ما يعملون كأني دكتور ... و أود أن أقول أن نظام التعليم لدينا يشبه سيارة ذات إضاءة خلفية قوية تضيء الماضي و لكنها بالكاد تضيء ما هو آت من المستقبل ..."

و أكثر من ذلك رفضت جل المطبوعات طبع كتابه هذا و لكن في سنة 1923 نشر له كتاب آخر بعنوان " الصاروخ في الفضاء الكوكبي"، 92 صفحة، متبوعا بكتاب آخر أكبر حجما، 429 صفحة، نشر سنة 1929، وهو الذي نال شهرة عالمية على أنه كتاب ذو أهمية علمية بالغة، و الكتاب تحت الطبع علم اوبيرث بأبحاث عالم آخر الذي هو الأمريكي " روبرت كودا رد" وكتبه "طريقة لبلاغة أقصى الارتفاعات" نشر سنة 1919. وقد قام بمراسلته فيما بعد و تطورت العلاقة بينهما ، وقد علم كذلك بالعالم الروسي "قسطنطين تسولوفسكي" وتبادل معه أيضا الرسائل في نفس الموضوع. في نفس السنة (1929) فقد قرر الابصار بالعين اليسرى اثر حادث تعرض له عندما كان يقوم تجارب أثناء حصة تصوير لفيلم "فتاة في القمر" للمخرج الألماني "فريت لانغ". و خلال مدة اشغاله مع استديو الأفلام في برلين ، قام اوبيرث بتطوير حزمة احتراق
هواية الصواريخ

و حنجرتها تشتغل بالوقود السائل و سماها " الحنجرة المخروطية النفاثة " وتم تسجيلها بشكل رسمي في برلين 1930.

في الثلاثينيات اشتغل مع أحد المساعدين الشباب ، وهو "تهنر فون براون " الذي سيصر مهندس المشروع الصاروخي للجيش الألماني "V-2" أثناء الحرب ، و المشروع الفضائي للحكومة الأمريكية "أبوللو" ، في السنوات من القرن الماضي ، بعد نهاية الحرب العالمية الثانية رحل بعائلته إلى مدينة "فوخت" قرب "نيرنبرغ".

اشتغل في سويسرا و إيطاليا بعد ذلك و عمل على تطوير صاروخ بدون دخان يشتغل ب "نترات الأمونيوم" كوقود صلب رفقة ابنه " أدولف ".

في سنة 1959 قام صديقه براون باستضافته إلى وكالة أسلحة الصواريخ الباليستية في الاباما بالولايات المتحدة الأمريكية. ومكث هناك ثلاث سنوات وعاد إلى ألمانيا ، و بقي يتردد على الولايات المتحدة من حين لأخر حيث استدعى مرة أخرى في يوليو 1969 للحضور الشرفي لإطلاق المركبة الفضائية "أبوللو-11" في أول رحلة يقوم بها الإنسان إلى القمر.

وفي كتابه " العقل والمادة " وكتابات أخرى نلمس الجوانب الفلسفية الإنسانية من تفكير أوبيرث ومحاولاً إيجاد الجسور الخفية بين العقل والمادة قائلاً: " إننا في حاجة لمعرفة عميقة بمجاهل أنفسنا..."

أن أوبيرث يعتبر ثاني مؤسس لعلم الصواريخ وعلم الفلك الحديث بعد تسولوفسكى و قد امتلك عقلاًً فذا جعله يتفرد في تفكيره و طموحه أيضاً تفرد، و ميزته هذه لم تمنعه أن يتحلى بأهم صفة في أخلاق العلماء، فما هو المواقع ، فقد كان متواضع في كلمته وملبسه وسائر حياته . توفي هيرمان أوبيرث في مستشفى نورمبورغ يوم 29 دجنبر 1989 عن عمر تجاوز 95 سنة.
3.6.2 روبرت كودارد.

"انه لمن الصعب تحديد معنى المستحيل، فآحلام الأمس هي أمنيات اليوم وهي حقائق الغد."

1.3.6.2 حياته:

الاسم الكامل: "روبرت هيتشين كودارد" ولد يوم 5 أكتوبر عام 1882 في بلدة ورسيستر وولاية "ماساشوست" الأمريكية من أبيه "ناحوم دانفورد كودارد" وأمه "فاني لويس هويت" وكان ابنهم الوحيد الذي عاش إلى مرحلة البلوغ.

في سن الخامسة ظهرت عليه علامات النبوغ حيث علمه والده كيفية توليد الكهرباء الساكنة في قبو المنزل وبدأ يعتقد انه بإمكانه القفز عاليا إذا ملئت بطاريات الزنك بالكهرباء الساكنة.
هواية الصواريخ

بدأ اهتمامه بالطيران منذ هذه المرحلة في بداية الأمر كان يستعمل النماذج المعدة سلفا، و بعدها استعمل البالونات، كما بدأ يسجل أعماله في مذكرات كان يجدد بنفسه، و هي الخصلة التي ستلعب دورًا حيوياً في حياته العلمية المستقبلية.

في سن 16 حاول بناء بالون بقضبان الألمنيوم كان يشكلها في ورشة داخل البيت و بعد خمسة أسابيع من العمل المضني و الموثق بشكل جيد تخلى عن المشروع، و لكنه احتفظ بعزمه على مواصلة العمل مهما كانت الظروف.

و بدوره أصبح أكثر اهتمامًا بعلوم الفضاء عندما قرأ كتاب "هـ. ج. ويلز" الذي عنوانه "حرب العوالم"، ازداد عزمه على الاهتمام بالصواريخ عندما لمعت في ذهنه فكرة تسليق الفضاء عندما كان يسلق شجرة الكرز لقطع الأغصان المبتزة. حيث كتب بعد ذلك حول هذه المسالة: "كم سيكون عجيب صناعة آلة لها القدرة على الانتقال إلى كوكب المريخ..." و بقي تاريخ 19 أكتوبر يوماً للذكرى لهذا الالهام العجيب.

مع مرور السنوات الدراسية أحس أنه قد تأخر عن أقرانه في الصف نظراً للكثرة الاعتدادات الهضمية التي كانت تصيبه واستعاض عن ذلك بكثرة المطالعة و كان كثير التردد على المكتبات المحلية لاقتناء الكتب المتخصصة في العلوم الفيزياء وقد التحق بعدها بالمعهد العالي بنفس المدينة كما انتخب رئيساً للقسم و في احتفال للخريج سنة 1904 الذي كلمة بالمناسبة كان مما قاله فيها "...انه لمن الصعب تحديد معنى المستحيل... فأحلام الامس هي آماني اليوم و حقائق الغد..." و كانت هذه الكلمة الموجه الأساسية لحياة كودارد العلمية. في نفس السنة التحق بمعهد البولينك في المدينة و سرعان ما نال إعجاب أساتذته و خصوصاً رئيس قسم الفيزياء الذي جعله مساعده في المختبر و معيد للدروس في الفيزياء داخل الفصل. وقام بعدها بكتابة مقال تحقيق فيه عن طريقة مبتكرة لتوازن الطائرات و هو لم يتخرج بعد و أرسل المقال لمجلة "سانديفينيك"
هواية الصواريخ

اميريكان " و نشر المقال سنة 1907 وقد كتب في ما بعد في مذكراته أن مقاله ذاك قد تضمن حلولاً تقنية غير مسبوقة في مجال الطيران.

سنة 1908 حصل على درجة البكالوريوس في مجال العلوم من المعهد ثم التحق بجامعة "كلارك". لم يبدأ كتاباته الأولى في مجال الصواريخ التي تشتغل بالوقود السائل إلا في فبراير من عام 1909. ثم قام بأبحاث حول كيفية زيادة زاوية مرحلة وذلك عن طريقة البارود الأسود الوحيدة التي كانت سائدة آنذاك وقد خمن أن استعمال خليط الأوكسجين والهيدروجين السائلين يمكن أن يرفع المردود الطاقي بنسبة خمسين في المائة. وفي السنة الموالية حصل على شهادة الماجستير من الجامعة المذكورة، ثم حصل على شهادة الدكتوراه سنة 1911. وفي السنة الموالية التحق كأستاذ بجامعة "برينستون".

خلال العشرين الأول من القرن العشرين كانت موجات الراديو تقنية جديدة استأثرت باهتمام الباحثين و العلماء و كانت مجالا خصبا لابتكاراتهم و تجاربهم و كان كودارد بدوره يجري التجارب حول تأثير الموجات على مجموعة من المواد العازلة بهدف تضخيم تيار الناتج عن التردد وقد اخترع أنبوبا مفرغا يشبه أنبوب الأشعة السينية وسجل الاختراع باسمه و حصل على براءة الاختراع بتاريخ 2 نوفمبر 1915 و قد سبق بذلك حتى العالم "لي دو فوريست" في هذا المجال. و كذلك بدأت الخطوات الأولى لعلم الإلكترونيات الجديد. خلال سنة 1913 تدهورت صحته بشكل مقلق اثر إصابته بمرض السل مما اضطرها للعودة للمنزل والديه حيث أمضى هناك فترة طويلة من النقاوة. و خلالها بدأ في أهم أعماله حيث قام بتسجيل براءتي اختراع الأولى نصف صاروخ متعدد المراحل، أما الثانية فكانت حول كيفية استخدام الكازولين و أكسيد النترات كوقود سائل للصاروخ وقد اعتمد في إنجازاته هذه على مضخات هواية كانت مسجلة باسم أحد المخترعين السويديين "غوتستاف دو لافال" والتي لازالت تعرف باسمه "جنجر دو لافال". و هي تقوم بتحويل
الطاقة الغازية إلى طاقة حركية دافعة وهو ما مكن من الارتقاء من مردود طافي ضعيف 2 في المائة إلى مردود طافي أعلى 64 في المائة وهو ما يؤدي إلى خفض كمية الوقود المطلوبة لطيران الصاروخ ومنه تصبح الرحلات الفضائية الصاروخية ميسرة.

في نهاية سنة 1914 تماثل لشفاء ثم الالتحاق بجامعة "كلارك" كأستاذ. وفي سنة 1916 أصبحت كلفة أبحاثه في مجال الصواريخ فوق قدراته المالية و بدأ في البحث عن ممول محتمل للأبحاث حيث اتصل بمعهد "سميتسونيان" الذي وافق على صرف مبلغ 5 آلاف دولار موزعة على خمس سنوات ، كما وافق معهد البوليتيكينيك على الاشتغال في مختبره المتخصص في الكهرومغناطيسات.

وفي حقيقة الأمر لم تكن أبحاث غودارد تقتصر على علم الصواريخ بل قام بأبحاث في مجال الأسلحة حيث قام بتطوير فكرة سلاح "البازوكا" وتمم أحد الباحثين في الجامعة المشروع الذي أدى إلى اختراع هذا السلاح و استخدامه في الحرب العالمية الثانية بشكل كثيف.

في سنة 1919 قام معهد "سميتسونيان" بنشر كتاب له تحت عنوان "طريقة لبلوغ أقصى الارتفاعات" حيث وضع فيه و شرح نظرياته الرياضية حول طيران الصاروخ ، كما استعراض فيه نتائج أبحاثه في مجال الوقود الصلب والسائل و إمكانيات غزو الفضاء ، و هذا الكتاب يشبه من حيث المضمون إلى حد ما الكتاب الذي أصدره العالم الروسي "تسولكوفسكي" سنة 1903 تحت عنوان "استكشاف الفضاء الكوني بالآلات ارتدادية". وقد اعتبر الكتاب هذا حدثا بارزا في تأسيس علم الصواريخ . وقد وصف في بعض أجزاء الكتاب العلاقات الرياضية بين كتلة الوقود الدافع وكتلة الصاروخ و قوة الدفع و السرعة و ناقش فيه المتطلبات الضرورية لرفع كتلة واحد باوند إلى الفضاء و كيفية استعمال الصاروخ ليس فقط لبلغ الارتفاعات العليا فقط ، و لكن للانفلات من الجاذبية الأرض كما أعطى من خلال الحسابات التي أجراها الوزن الضروري لإطلاق صاروخ نحو القمر ثم إشغال
شملت من البارود السود عند اصطدام الصاروخ يستحظه قصد إحداث انفجار كبير يمكن مشاهدته من على الأرض بواسطة تلسكوبات قوية، و بعد أربعين سنة من هذا التاريخ، يوم 14 شتنبر 1959، كان المسبار الفضائي الروسي "لونا-2" قد حط على سطح القمر، كما ذكر غودارد، لكن مع تطور تقنيات موجات الراديو انتفت الحاجة لتفجير البارود الأسود كوسيلة بصرية لكشف نزول المسبار على سطح القمر.

ومع ذلك، كانت الصحيفة "نيويورك تايمز" تعبر عن انتقاداتها عن كتابة غودارد، حيث يعتقد العلماء الآخرون في إمكانية السفر إلى الفضاء وفق ما طرحه في كتابه وهو ما أفقدته الثقة في الآخرين وانزواء وانشغال بعيدا عن الأضواء.

في 16 مارس 1926 قام بإطلاق أول صاروخ يشتغل بالوقود السائل في منطقة "أوبورن" بولاية ماساشوستس، وهو المكان الذي اتخذ فيما بعد كمركز لإطلاق الصواريخ، وقد طار الصاروخ، الذي حمل اسم "نيلل"، لمسافة 41 قدم خلال مدة 2.5 ثانية وسقط في حقل مزرع باللفت، و هذا الإطلاق التجريبي رغم توالته، أثبت صحة أراء غودارد في استخدام الوقود السائل لدفع الصواريخ نحو الفضاء. و يمكن ملاحظة من
هواية الصواريخ

خلال الصورة أن المحرك يوجد فوق وبالتالي فهو يقوم بعملية الجر خلافاً للصواريخ الحالية التي تكون فيها المحركات تحت و تقوم بالدفع نحو الأعلى.

في شهر يوليو من سنة 1929 قام بإطلاق صاروخ آخر وهو ما أثار انتباه الصحافة و علم الطيار الشهير آنذاك "شارلز ليندبيرغ"، بتجارب غودارد و التقى به في شهر نونبر من نفس السنة في مكتبه بجامعة كلارك، وهو اللقاء الذي خلف انطباعات إيجابية لدى الطرفين حيث تبادلا و جهات نظر في ما يتعلق مستقبل الطيران واقترح عليه أن يستغل شهرته كبطل قومي للبحث عن ممولين جديد لتجارباه و لكن كان من الصعب جداً إيجاد شريك حقيقي نظراً للأزمة المالية التي اجتاحت الولايات المتحدة آنذاك مع بقية دول العالم. و قد تمكن في أخر المطاف من إيجاد ممول لأبحاث غودارد وتعلق الأمر بعائلة "غوغنهايم" حيث تقبلت بتمويل أبحاثه بمبلغ مائة ألف دولار لمدة أربع سنوات. و بعد حصوله على هذا التمويل انتقل إلى منطقة "روزويل" بنيوميكسيكو بتاريخ 23 شتنبر عام 1935 حيث اشتعل هناك في عزلة عن العالم لمدة أزيد من 12 سنة ولما اقترح أبحاثه على الجيش الأمريكي لم يستطيع هذا الأخير فهم مغزى أبحاثه في التطبيقات العسكرية و بالتالي قبول اقتراحه بالرفض.

خلال الثلاثينيات قام العالم الألماني "ثيرنر فون براون" باستخدام أبحاث غودارد المنشورة في الكتب و الدوريات العلمية في بناء أولى الصواريخ الألمانية "A-1 و V-1 و A-2 و V-2" التي كانت تتساقط على لندن العاصمة خلال السنين الأخيرتين من الحرب العالمية الثانية.

كما كان غودارد ضحية عملية تجسس قامت بها المخابرات الألمانية حيث قامت بزرع عميل لهم في محيطه وبالتالي نقل المعلومات إلى ألمانيا النازية. و نلاحظ هنا دور الحكومات المتخاذل تجاه العلماء و المخترعين حيث أن الجيش لم يكن في المستوى الرهان الذي عقده.
عليه غودارد عندما رفض أبحاثه و بالتالي تركه عرضة لحبال المخابرات الأجنبية التي كانت تعي تمام الوعي خطورة أبحاثه و أهميتها في التفوق العسكري و بالتالي سرقتها منها أو إغرائه ببيعها أن لزم الأمر. و لم تدرك الحكومة أهمية غودارد و أبحاثه إلا بعد أن فاجئها الاتحاد السوفيتي بإطلاق أول قمر صناعي "سبوتنيك 1" سنة 1957 و ندمت، على التقصير في واجبها تجاهه، حين لا يفعلا الندم لان السيد غودارد كان قد فارق الحياة نتيجة إصابته بسرطان الحنجرة عشية نهاية الحرب العالمية الثانية عام 1945 ، واضطرت لاستخدام العلماء الألمان و على رأسهم "ثيرنر فون براون" حيث كانت قد جلبهم من برلين و هم الذين كانوا يشتعلون، على قدم و ساق، تحت أوار الفوهرر المباشرة في المانيا.

اشتغل غودارد مع الجيش ولكن في مشروع تطوير الطائرات و عند نهاية الحرب العالمية الثانية قام بفحص صواريخ V-2 التي جلبها من المانيا و قال عنها في مذكراته: "انها صواريخ بدائية و لكنها تحتوي الكثير من مكونات الصواريخ الحديثة". سنة 1945 علم غودارد انه مصاب بسرطان الحنجرة و علم أن حياته أُشِكت على نهايتها و فعلا توفي في نفس السنة و دفن في المدينة التي شهدت ولادته "ورسيستر" بولاية ماساشوسيتس.

بضعة مراجع للاستناد:
"لفضاءي الخارجي و استخداماته السلمية" الدكتور بيغي الدين عرجون، سلسلة عالم المعرفة عدد: 17 ص124
http://www.nso.lt/history/hermann.htm
http://www.nasa.gov/centers/goddard/about/drgoddard.html#goddard

89
الفصل الثالث

مختصر نظرية الصاروخ.

1.3 قانون نيوتن.
ينص القانون الثالث للعالم اسحق نيوتن على أن "كل فعل له رد فعل مساوي له في القدر و معاكس له في الاتجاه"، وهو المبدأ الذي تعتمد عليه الصواريخ و جميع أنواع الأجسام الطائرة.

و ذلك عن طريق احتراق وقود دافع مناسب داخل حجرة الاحتراق في المحرك الصاروخي مما يؤدي إلى إنتاج غازات جد ساخنة و كثيفة تنفخ بسرعة كبيرة من حجرة الاحتراق عبر فوهة ضيقة تسمى بالحنجور و هو ما يؤدي إلى ظهور قوة دفع معاكس لاتجاه خروج الغازات ، يتعلق الأمر بنوع من الارتداد ، و يمكن ملاحظة هذه الظاهرة مثلا عند ما يكون أنبوب من الماء متصل بالصنبور فعند فتح الصنبور لكي يخرج الماء من الجهة الأخرى من الأنبوب يتمتد البندقية في اتجاه الماء، و يمكن أن يكون أقرب مثال لهذه الحالة هو حالة البندقية و الرصاصية في حالة خروج الرصاص من فوهة البندقية ترتدد البندقية إلى الخلف وهو شئ معروف عند القناصة.

الدفع 2.3
قوة الدفع هي التي تحرك جميع الأجسام في الفضاء ويمكن قياسها بوحدات مناسبة مثل النيوتن و الكيلوغرام و الباوند و بلغة الفيزياء هي نتيجة الضغط الكبير الناتج عن الغازات داخل غرفة الاحتراق.

الشكل جانبه يبين شكل غرفة الاحتراق مع المنفذ الغازي الضيق (الحنجر) وقيمة الضغط داخل الحجرة قيمة غير متماثلة بحيث تقل قيمته مع الاقتراب من منطقة الحنجور، بحيث هناك فرق الضغط بين داخل الحنجرة و المحيط الخارجي وهذا الفرق هو المسؤول عن إنتاج قوة دفع مناسبة (F).

لكي يتم تسريع الغازات إلى أقصى سرعة ممكنة يجب تحقيق شرطي الحرارة و الضغط العاليين وذلك عن طريق استعمال وقود ذو طاقة عالية كما يجب أن يكون الوزن المولي للغازات خفيف ما أمكن و كذلك من الضروري تخفيف ضغط الغاز على مستوى الحنجور عن طريق تكبير معدل التوسع الحنجري وهو نسبه مساحة
Ae الفوهة إلى مساحة الحنجرة A1 الحنجور و القوة F هي حصيلة القوى المسلطة على الجدران الداخلية بواسطة ضغط الغاز و الخارجية عن طريق الضغط الجوي و يمكن حساب القوة عن طريق تطبيق معادلة إنحفاظ العزوم و هي كما يلي:

\[F = qV_e + (P_e - P_a) A_e. \]

حيث:

- \(q \): كتلة المواد المقذوفة.
- \(P_e \): الضغط في غرفة الاحتراق.
- \(P_a \): الضغط الخارجي.
- \(A_e \): مساحة الفوهة.
3.3 إنحفاظ العزوم

إن الغزم الخطي (p) لنقطة مادية ما يعبر عنه بجداء الكتلة وسرعة التدفق الغازي و

\[P = mv \]

(1.1)

و القانون الثاني لنيوتن الخاص بالحركة يقول أن مجموع القوى المسلحة على نقطة مادية يساوي مجموع تغير شدة العزم (P) بدلالة الزمن (t) وتعبيره الرياضي كما يلي:

\[F = \frac{dp}{dt} \]

(1.2)

و هو ما يعادل التعبير الرياضي بالعلاقة الأساسية للديناميكا.

وإذا كان لدينا مجموعة من النقاط المادية فإن غزمها هو مجموع العزوم لكل هذه النقاط كل على حدة. وعندما تكون قيمة مجموع القوى المسلحة على مجموعة النقاط منعدمة فإن قيمة مجموع العزوم تبقى ثابتة وهذا المبدأ يدعى مبدأ إنحفاظ العزوم وسنحاول خلال الفقرات الموالية معرفة كيفية تطبيق هذه المبادئ في مجال الصواريخ.
إذا اعتبرنا جسم صاروخ يسبح في فضاء ذو مجال تجاذبي ومحرك الصاروخ قد اشتعل خلال مدة زمنية قدرها Δt، وخلال هذه المدة، فقد كمية من وزنه على شكل غازات مقذوفه بمعدل ثابت وسرعة ثابتة مع افتراض أن القوى الأخرى منعدمة كتأثير الجاذبية ومقاومة الهواء.

و بشكل أسفل (a) يوضح الوضع الذي يكون عليه الصاروخ خلال وحدة الزمن (t)، حيث أنه ذو كتلة (M) (هيكل + وقود) خارجية الجزء الزمنية Δt وخلال المدة الزمنية Δt وهو يتحرك وفق سرعة (V)، وخلال المدة الزمنية Δt تغيرات على مستوى الكتلة الكلية للصاروخ حيث أنه تم فقدان كتلة ΔM مقدارها على شكل غاز مقذوف وانتقل بسرعة u ومن ثم تقلص وزن الصاروخ وأصبح سرعته أصبحت $(\text{الوضع (b))}$ $V+\Delta V$ وزنه $M-\Delta M$.

و بما أن القوى الخارجية منعدمة يمكن كتابة

$$dp/dt=0$$

تعبير العزوم كما يلي:

$$(1.3) \quad 0 = \frac{\Delta P}{\Delta t} = \frac{(P_2-P_1)}{\Delta t}$$

بحيث:

: العزم النهائي عند الحالة (b).

P_2
العزم البدئي عند الحالة (a)

و يمكن إعادة كتابة الصيغة أعلاه عن طريق تعويض صيغة العزم P بصيغة mv

لأن:

\[p = \text{mv} \]

و منه:

\[\Delta t \]

و كلما اقتربت المدة الزمنية \(\Delta t \) من الصفر كلما اقتربت فرق السرعة من \(\Delta v/\Delta t \) الخاص بجسم الصاروخ.

تعبر عن الكتلة الناقصة من الوزن الكلي للصاروخ خلال المدة

\(\Delta t \) خالص من التناقص الكتلي خلال وحدة الزمن

\(\frac{\Delta M}{\Delta t} \) و منه

و هي قيمة سالبة وفي النهاية فإن تمثل سرعة الكتلة المقدوّفة من الصاروخ و مع هذه التغييرات يمكن كتابة المعادلة (1.4) كما يلي:

\[(1.4) \quad 0 = \frac{[(M-\Delta M)(v+\Delta v)+\Delta Mu] - Mv}{\Delta t} \]

حيث أن الشطر الأول من المعادلة يتعلق بخصائص الصاروخ أما الشطر الثاني فانه يتعلق بشدة القوة وهي قوة الدفع وهي ناتجة عن الكتلة المادية التي تغادره بسرعة ما و مصممو الصواريخ بإمكانهم زيادة قوة دفع الصاروخ عن طريق الزيادة في كمية المواد المقدوّفة خلال وحدة الزمن وبسرعة أكبر.
في مجال الصواريخ فإن العلاقة الأساسية للدفع هي:

\[F = q V_e + (P_e - P_a) A_e \]

كما تمت الإشارة إليه فإن كتلة المواد المقذوفة. الضغط في غرفة الاحتراق. الضغط الخارجي. مساحة الفوهة. الضغط الذي يتم باشتقاقه فيما سرعة التدفق الغازي. كما أن الجداء يسمى بالعزم أو السرعة، و الجداء الدفع الناتجة عن الضغط الغير المتوازن على مستوى الفوهة. كما سنرى لاحقا فان القوة القصوى لا تتحقق إلا عندما يكون

\[P_e = P_a \]

يمكن تبسيط المعادلة أعلاه عن طريق إعطاء تعريف لسرعة الغاز، \(C \),

\[C = V_e + \frac{(P_e - P_a) A_e}{q} \]

و المعادلة (6.1) تختزل على شكل:

\[F = q \]
النبض و العزم

خلال الفقرة السابقة رأينا كيف يتم تعبير القانون الثاني بالشكل الرياضي:

\[F = \frac{dp}{dt} \]

بضرب ظرف في المعادلة في المعامل و اشتقاقها من الزمن \(t_1 \) إلى الزمن \(t_2 \) فان المعادلة تصبح على شكل:

\[F \, dt = dp \]

(1.9) \(\int F \, dt = p_2 - p_1 \rightarrow p_1 + \int F \, dt = p_2 \)

و التكامل هنا هو عبارة عن متجهة تمثل النبض الخطي, أو النبض ببساطة, الخاص بالقوة F خلال الزمن t فالمعادلة هنا تبين انه عند تطبيق قوة F على نقطة مادية خلال مدة زمنية ما فان العزم النهائي للقوة F خلال P1 و نبض القوة العظم أبدئي 1 بحـد بإضافة العزم الذيي 2 نبض القوة خلال هذه المدة.

عندما تطبـق مجموعة من القوى على نقطة مادية ما اثناء دراستها فانه يجب الأخذ بعين الاعتبار نبض كل قوة على حدة وعندما تكون مجموعة من النقط المادية في الدراسة فإنه يتم استخدام المجال المتجهي للعزم لكل نقطة و مجموع النبضات الخاصة لكل نقطة و هو ما يمكن التعبير عنه رياضيا بالصيغة:

\[P_2 = P_1 + \Sigma F \, dt \]

(1.10)

بالنسبة لمدة زمنية \(\Delta t \) يمكن إعادة صياغة المعادلة أعلاه كما يلي:

\[P_2 = P_1 + \Sigma (F \Delta t) \]

(1.11)
سنحاول في الفقرة الموالية معرفة كيف يتم تطبيق ما سبق من مبادئ و معادلات و مفاهيم العزوم و النبض الخاص في مجال الصواريخ.

نعتبر صاروخ ذو كتلة بدنية M يتم إطلاقه إلى فوق بشكل عمودي عند لحظة زمنية $t=0$. يستهلك صاروخ الوقود وفق معدل ثابت q و يتم طرده وفق سرعة ثابتة %V_e تتعلق بالصاروخ. عند اللحظة t يصبح وزن الصاروخ مع الوقود المتبقية %$M-qt$ و سرعته v. خلال الحيز الزمني الذي مقداره Δt تتعلق كمية من الوقود وزنها $q\Delta t$ تكون قد نفذت، من أجل تحديد سرعة انطلاق الغاز من جسم الصاروخ يقوم بتطبيق مبدأ النبض و العزم بين المدة t و المدة $\Delta t+t$. كما تجب ملاحظة أن الاشتتاق لا يأخذ بعين الاعتبار مقاومة الهواء الناتجة عن حركة الصاروخ.

ويمكن التعبير عن الشكل التوضيحي بما يلي:

\[
(M-qt)v-g(M-qt)\Delta t= (M-qt-q\Delta t)(v+\Delta v)+q\Delta tu
\]
سنقوم بالقسمة على Δt و تعويض $u-(v+\Delta v)$ بالقيمة V_e، هي سرعة المواد المقذوفة على شكل غازات. و عندما تقترب من الصفر تكون المعادلة السابقة أصبحت على الشكل:

$$g(M qt) = (M qt)(dv/dt)-q V_e$$

(1.13)

عند عزل المتغيرات و إجراء الحساب التكامل من الحالات التي $v=v$ و $t=t$ إلى الحالة التي تكون فيها $v=0$ و $t=0$ تكون فيهما V_e و M توفر المعادلة على شكل:

$$\int dv = \int \frac{q V_e}{(M - qt)}.$$

و هي تساوي المعادلة الآتية:

$$v = V_e \ln\frac{M}{(M - qt)} - gt$$

(1.15)

إن الحد gt في المعادلة (1.15) ناتج عن تأثير جاذبية الأرض نحو الأسفل. كما أنه من الأحسن التعبير عن تغير السرعة Δv وتصبح المعادلة أعلاه على شكل:

$$\Delta v = V_e \ln\frac{M}{(M - qt)}$$

(1.16)

لا بد من ملاحظة أن الكتلة M تعبر عن الوزن البدني و الصيغة تعبر عن الوزن النهائي للصاروخ ومنه يمكن كتابة المعادلة

$$M - qt$$

(1.16) كما يلي:
هواية الصواريخ

(1.17) \[\Delta v = V_e \ln \left(\frac{m_0}{m_f} \right) \]

عادة ما يسمى بمعدل الكتلة. وتسمى المعادلة (1.17) بمعادلة تسيولوكوفسكي (1857-1935) الخاصة بالصواريخ. هو عالم روسي يعتبر بحق من رواد علم الصواريخ الثورة. هو أول من قام باشتقاقها و لذلك سميت باسمه. في مجال التطبيق يعوض المعامل \(V_e \) بسرعة الغاز من الحنجر و منه تصبح المعادلة (1.17) كما يلي:

(1.18) \[\Delta v = C \ln \left(\frac{m_0}{m_f} \right) \]

أو كتابتها بطريقة بديلة:

(1.19) \[m_f = m_0 e^{-\left(\frac{\Delta v}{C} \right)} \]

(1.20) \[m_0 = m_f e^{\left(\frac{\Delta v}{C} \right)} \]

المعامل \(e = 2.71828 \) ثابت رياضي يساوي 28

بالنسبة لكل الأجسام الطائرة فإنها من الضروري معرفة مدة الاحتراق على مستوى المحرك من أجل معرفة التغير الطارئ على مقدار السرعة. وتستعمل المعادلة أسفله بعد ترتيب العوامل:

(1.21) \[t = \frac{m_0 q}{1 - \frac{1}{e^{\left(\frac{\Delta v}{C} \right)}}} \]
5.3 الاحتراق و سرعة التدفق.

أثناء تفاعل الاحتراق تبقى كتلة كل عنصر ثابتة , تعتبر المعادلة التفاعل الكيميائية الخاصة بتفاعل غاز الميثان مع الأوكسجين

\[
\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}.
\]

من اجل تفاعل كيميائي تام و متوازن فان المعادلة الكيميائية تبين أن واحد مول من غاز الميثان تتفاعل مع اثنان مول من غاز الأوكسجين لتعطي مول واحد من أكسيد الكربون و اثنان مول من الماء و هذا معناه أيضا أن 16 غرام من الميثان تتفاعل مع 64 غرام من الأوكسجين لتكوين 44 غرام من أكسيد الكربون و 36 غرام من الماء و نلاحظ أن مجموع وزن المتفاعلات و النواتج متساويان (80 غرام لكل طرف).

من المهم الإشارة أن وقود الصاروخ يجب أن يكون مشبع من ناحية المؤكسد من اجل تحقيق مردودية أكبر أي أن نسبة المؤكسد إلى المختزل يجب أن تكون أكبر من واحد.

نعتبر معادلة تفاعل الكيروسين مع الأوكسجين(1) :

\[
\text{C}_{12}\text{H}_{26} + 12.5 \text{O}_2 \rightarrow 12 \text{CO} + 13 \text{H}_2\text{O}.
\]

 فالوزن المولي للكيروسين هنا يساوي 170 لأنه لدينا 12 ذرة كربون ووزنها الذري هو 12 و 26 ذرة هيدروجين ووزن ذرة الهيدروجين هو 1 و 144 و 26*1 = 26 و بالتالي نقوم بجمع العددين 26+144= 170 و الوزن المولي للأوكسجين يساوي 32 لأن الوزن الذري للأكسجين يساوي 16 و
و هي نسبة مثالية بالنسبة لمحرك صاروخ يستخدم بالكيمياء.
وفي حقيقة الأمر هذه المسألة تتعلق بالغرض من المحرك بحيث أن النسب العالية من المؤكسد تزيد من حجم الخزان وبالتالي وزن المحرك و العكس صحيح أي أن نسبة منخفضة من المؤكسد يكون المحرك خفيف و المهمة المراد انجازها هي التي تحدد وزن المحرك وبالتالي تحدد نسبة المؤكسد الواجب استخدامها حيث يتم عادة التضحية بمزايا في سبيل أخرى تكون ذات أولوية في الغرض من إطلاق الصاروخ.

لقد تمت الإشارة سابقا أن نبض القوة مساوي لجداء كتلة المواد المتدفقة و سرعة تدفقها من الحنجور. و السرعة المذكورة معبر عنها بالصيغة الرياضية التالية:

\[
Ve = \sqrt{ \frac{2k}{k-1} \left(\frac{R'Tc}{M} \right) \left(1 - \frac{P_e}{P_c} \right)^{(k-1)/k} }
\]

حيث:

: معدل الحرارة الخاصة.
: حرارة الاحتراق.
: معدل الوزن المولي للغازات الناتجة.
: ضغط حجرة الاحتراق.
: الضغط عند فوهة الحنجور.
الحرارة الخاصة في الصواريخ تتغير بتغير تركيبة و حرارة الغازات العادمة من المحرك.
و حرارة اللهب هنا تتراوح مابين 2500 إلى 3600 درجة سيلسيوس و يتراوح ضغط حجرة الاحتراق مابين 7 إلى 250 ضغط جوي اطموسفير (اطموسفير) . يساوي عادة قيمة الضغط الجوي الذي يشتغل فيه المحرك Pe الصاروخي.
من خلال المعادلة رقم (1.22) يتبين أن ادوار ضغط و حرارة حجرة الاحتراق و انخفاض الوزن المولى للغازات العادمة أو المقدوحة تتجلى في السرعة الفائقة التي تخرج بها هذه الغازات. و بالتالي تكون القوة الدافعة الناتجة كبيرة. وهو ما يبين أفضلية الهيدروجين السائل كوقود للمحركات الصاروخية.
كما تجب ملاحظة أنه أثناء عملية الاحتراق يحدث نوع من التفكك الجزيئي على مستوى المواد الناتجة فالحرارة تتفكك الجزيئات المركبة إلى جزيئات أكثر بساطة غير أنها سرعان ما تعود لنتحد من جديد.
في تفاعل الكيروسين مع غاز الأوكسجين تكون المتفاعلات الأولية في حالة توازن مع الجزيئات الناتجة مثل:
CO2, H, H2O, HO, O, O2
و هذا التفكك الجزيئي له تأثير على حرارة التفاعل.

(1) الصيغة الكيميائية للكيروسين هي: C12H26
و يسمى عادة في الكيمياء بالواتكان.
(2) الحرارة الخاصة بمادة ما هي الحرارة الضرورية للرفع من سخانتها بدرجة واحدة لواحد غرام من هذه المادة.
6.3 النبض الخاص.

يقصد بالنبض الخاص، \(I_{sp} \), للمحرك الصاروخي النسبة التي تكون لقيمة الدفع إلى معدل كتلة المواد المتدفقة من الحنجور
وتصيغة رياضية يكتب على شكل:

\[
I_{sp} = \frac{F}{qg}
\]

حيث:

\(F \) : قوة الدفع الناتجة.

\(q \) : معدل كتلة الغازات المقدوسة أو الطاردة.

\(g \) : شدة جاذبية الأرض: 9.8 نيوتن.

وحدة النبض الخاص يعبر عنها بالثانية (s). فعندما تكون قوة الدفع وكتلة التدفق ثابتتين طوال مدة احتراق الوقود، فإن النبض الخاص هنا هو نفس مدة احتراق الوقود و الذي يعطي قوة دفع مساوية لوزن هذا الوقود المستهلك.

تتغير قيمة النبض الخاص لمحرك ما وفق الظروف التي يشتغل فيها قيمته عند سطح البحر حيث يكون الضغط قصوى تختلف عن قيمة في الفراغ حيث يكون الضغط بساوي صفر لأن الضغط المحيط عامل داخل في معادلة الدفع ولكي تكون الحسابات أكثر دقة تجب الإشارة إلى مكان التجربة هل يتعلق الأمر بقيمة نبض خاص فوق سطح البحر أو في ظروف الفراغ.

هناك العديد من الخسائر من حيث المردودية داخل المحرك، أهمها تلك المرتبطة بعدم كفاءة تفاعل الاحتراق وأخرى ناتجة عن تصميم الحنجور وكذلك عن المضخات الدافعة، إن تعلق الأمر بمحرك ذو وقود سائل، وكل هذه العوامل تنقص من قيمة النبض الخاص.
و هو ما يجعل قيمته الحقيقية أو الواقعية أقل من تلك المستخارة من الحساب النظري الصرف.
من خلال المعادلة (1.8) يمكن تعويض القوة F بقيمتها في المعادلة (1.23) كما يلي:

\[F = qc \Rightarrow Isp = F/qg \]
\[Isp = qc/qg \Rightarrow Isp = C/g \]

المعادلة (1.24) تستعمل بشكل أساسي في حل المعادلة (1.18) عبر المعادلة (1.21) بحيث من النادر الحصول على قيمة C بشكل مباشر ولكن النبض الخاص لمحرك ما يسهل عملية حسابه كما رأينا.

7.3 المحرك و الحنجور.

يتكون محرك نموذجي عادة من حجرة احتراق و حنجور وصممات نافثة بالنسبة لمحرك يستغل على الوقود السائل أما المحرك ذو الوقود الصلب فانه ليس في حاجة لمصممات نافثة.
وحجرة الاحتراق هي المكان المخصص لتفاعل الاحتراق الذي يتم بين الوقود و المؤكسد ومن ثم يجب أن تكون من القوة و المتانة ما يجعلها تتحمل الضغط و الحرارة العاليين، و نظرا لهذه الظروف يتم لحق معدات بالمحرك قصد تبريدها مع الحنجور. كما يجب ان تكون كافية من حيث الحجم لكي يكون هناك تفاعل احتراق كامل.
يتمثل دور الحنجور في تحويل الطاقة الحرارية الكيميائية الناتجة عن تفاعل الاحتراق داخل الحجرة إلى طاقة حركية، إنها تقوم بتحويل غاز ذو ضغط وحرارة عالية وسرعة منخفضة إلى غاز ذو سرعة عالية وضغط منخفض. وقوة الدفع الناتجة هي في الأصل جدلاً كتلة الغاز وسرعته. وسرعة الغاز مطلوبة هنا بهدف زيادة في قوة الدفع.

النجور عبارة عن التقاء تحدب وتقعر. أو بعبارة أخرى هو التقاء مخروطين متقابلين على مستوى قاعدتهما الصغيرتين و المنطقة الضيقة (عنق الزجاجة) تسمى بالحنجرة، والنهجية الحنجور تسمى بالفوهة وعادة ما تكون هذه الأخيرة محسوبة من حيث المساحة. لأن ضغط الغاز الخارج يجب أن يساوي ضغط الجو المحيط بالصاروخ،

\[P_a = P_e \]

عندما تكون قوة الدفع قصوية يكون توسع الحنجور ملائم.
وعندما يكون الضغط الخارجي أكبر من الضغط الغازي \(P_e \) نقول أن هناك تتوسع بتفريق وعندما يكون \(P_a \) أصغر من \(P_e \) نقول هناك تتوسع بإفراط.

نسبة التوسع كما تمت الإشارة إليه هي نسبة مساحة الفوهة على مساحة الحنجرة:

\[\frac{A_e}{A_t} \]
من خلال ما سبق يتبين أن في تصميم الحنجور يتم مراعاة الظروف الضغطية التي سيشتمل فيها الصاروخ وعلى كل الأحوال فإن تصميم الحنجور الخاص بالضغط الجوي على سطح الأرض (0.1 ميكا باسكال). يختلف عن تصميم الحنجور الذي يشتمل خارج فضاء الأرض.

في الأشكال جانبه توضح شدة التوسع وتأثيرها على الخروج الغازي.

*الحنجور رقم 1 ذو توسع ملائم محيط بشكل كامل بالمغزل الغازي.
*الحنجور رقم 2 فهو ذو توسع بإفراط فالمغزل الغازي أصغر من حيث الحجم من الحنجور.
*الحنجور رقم 3 أصغر من حجم المغزل الغازي الناتج وبالتالي يتشكل هذا الأخير خارج الحنجور.

و هو ما يؤدي إلى فقدان كمية من الطاقة الدافعة.

بالنسبة لمساحة الحنجور هناك معادلة يمكن من تحديدها انطلاقاً بتحديد مجموعة من العوامل وخصوصاً معدل التدفق الغازي و المعادلة هي:

\[
A_t = \frac{q}{P_t} \sqrt{\frac{R'T_t}{M_k}}
\]

بحيث:

- **مساحة الفوهة** \(A_t \)
- **معدل التدفق الغازي** \(q \)
- **ضغط الغاز على مستوى الفوهة** \(P_t \)
- **الثابتة العالمية للغازات** \(R' \)
- **حرارة الغاز على مستوى الفوهة** \(T_t \)
الصواريخ

المعدل الحرارة الخاصة:

معدل الوزن المولي للغازات الناتجة

العامل T_t و P_t يتم التعبير عنهما وفق المعادلتين كما يلي:

\[
P_t = P_c \left(1 + \frac{k-1}{2}\right)^{-k/(k-1)}
\]

\[
T_t = \frac{T_c}{\left(1 + \frac{k-1}{2}\right)}
\]

بحيث:

ضغط حربة الاحتراق: P_c
حرارة الالتهاب داخل حربة الاحتراق: T_c

عدد ماخ: 8.3

يقصد به عادة نسبة سرعة جسم ما إلى سرعة الصوت في المنطقة المحيطة بهذا الجسم، وفي حالة محركات الصواريخ هي نسبة سرعة الخروج الغازي من الفوهة إلى نسبة سرعة الصوت في الظروف المحيطة بالمحرك. ويمكن التعبير عنه عن طريق استعمال عبارة تمدد الغازات الكاملة كما يلي:

\[
N_m^2 = \left(\frac{2}{k-1}\right)\left[\left(\frac{P_c}{P_a}\right)^{(k-1)/k} - 1\right]
\]

بحيث:

الضغط المحيطي: P_a
مساحة الفوهة: A_e
كم يمكن كتابة تعبير مساحة الفوهة بدلالة عدد ماخ وفق المعادلة الرياضية التالية:

\[
A_e = \left(\frac{A_t}{N_m} \right) \left[\frac{1 + \left(\frac{k-1}{2} \right) N_m^2}{(k+1)/2} \right] \frac{\left(\frac{k+1}{2(k-1)} \right)}
\]

يحدد معدل التمدد الحنجوري عادة بقسمة مساحة الفوهة على \(A_t \) مساحة الحنجرة.

عند إجراء الحسابات المتعلقة بالمسار الذي يتبعه صاروخ ما يتم أيضا تحديد ضغط الخروج الغازي المثالي لكن دون أن تتجاوز مساحة الفوهة القدر المسموح به لأن أي زيادة في مساحتها يؤدي إلى الزيادة المئوية في كتلة محرك الصاروخ وخصوصا عندما يكون الصاروخ متعدد المراحل بحيث يجب أن تكون مساحة الفوهة الخاصة بالمحرك المرحلة العلوية اصغر من مساحة فوهة محرك المرحلة السفلية ، فبالنسبة لمحركات الصواريخ التي تشتغل في الفضاء تحت ظروف انعدام الضغط الجوي هناك، فإن القوة الناتجة تزداد باطراد مع مساحة الفوهة، وهو ما يدفع المصممين إلى الزيادة في معدل التمدد عن طريق زيادة في مساحة الفوهة إلى الحدود الحرجة التي تكون فيها أي زيادة في المساحة تؤدي بشكل تلقائي إلى إضعاف مردوديته.

9.3 الوقود الصلب.
هواية الصواريخ

كما سبقت الإشارة إليه فإن المحركات التي تشتعل بالوقود الصلب ليست في حاجة سواء لأنظمة الضخ العالية القدرة ولا لأنظمة التبريد، فقوالب الوقود الصلب هنا تكون داخل حبارة الاحتراق ثم يتم إشعالها عن طريق تفجير صاعق مناسب يوضع في تجويف الأسطوانة، ومن ثم بدأة المحرك في الاشتغال، و الهندسة الداخلية لقوالب الوقود الصلب لابد لها أن تلعب دورا هاما في تحديد قوة الدفع ومدة الدفع وتوزيع شدة الدفع على وحدة الزمن. بطبيعية الحال اعتبارا للهدف من إطلاق الصاروخ أو إجراء تجربة الاختبار السكوني على المحرك. بحيث أن توزيع القوة خلال مختلف مراحل الاحتراق يكون وفق الشكل الهندسي لقوالب الوقود كما هو موضح في الرسم أسفله:

بحيث أن الاحتراق يبدأ من القناة الأسطوانية باتجاه محيط الأسطوانة والمساحة البدئية للاحتراق تحدد شدة الدفع بحيث أن العلاقة بين مساحة الاحتراق البدئية ومساحة الاحتراق النهائي تحدد العلاقة بين شدة القوة البدئية وشدة القوة النهائية أو هناك علاقة تناسب بين الطرفين بحيث أن نسبة المساحة البدئية إلى المساحة النهائية تساوي نسبة القوة البدئية إلى القوة النهائية و يكون تعبيرها الرياضي كما يلي:
هواية الصواريخ

\[
\frac{S_i}{S_f} = \frac{F_i}{F_f}
\]

حيث:
- المساحة البدئية: \(S_i \)
- المساحة النهائية: \(S_f \)
- القوة البدئية: \(F_i \)
- القوة النهائية: \(F_f \)

يتم تصنيع قوالب الوقود الصلب وفق أشكال هندسية موحدة. سنقتصر هنا على الأشكال الأكثر شيوعاً ومناقشة كل شكل على حدة:

الشكل (1): القناة الأسطوانية، تعطي قوة تزايدية باضطراد مع مدة الاحتراق ثم سقوط سريع في قيمة القوة حال توقف الاحتراق.

الشكل (2): ثقب حلقي، تكون فيه القوة الناتجة ثابتة طيلة مدة الاحتراق ثم رجوع القوة للقيمة الصفر حال ما يتوقف الاحتراق، و يلاحظ ان المنحنى مربعي أي أن المدة التي يبلغ فيها قيمته القصوية تساوي المدة التي يعود فيها من القوة القصوية إلى القيمة الصفر، و يرجع ذلك لكون الاحتراق يحدث في منطقتين مختلفتين.
في نفس الوقت بحيث يتجه من الحلقة نحو مركز العمود الوسطي كما يتجه من الحلقة نحو المحيط الخارجي للاسطوانة.

الشكل (3): النجمة الخماسية، تعطي قوة ثابتة مع تقعر خفيف نحو الداخل في الوسط و هو ما يلاحظ كذلك على مستوى منحنى الهبوط و الاحتراق يبدأ كما هو ملاحظ على مستوى خمس نتوءات متجهة نحو المركز.

الشكل (4): المتصلب، ينتج قوة كبيرة في اللحظة الأولى للاحتراق ثم تبدأ في التناقص التدريجي بحيث أن المنحنى مثلثي الشكل لأن الاحتراق يبدأ في ثمانية واجهات في نفس الوقت.

الشكل (5): سناراة مزدوجة، خصائص القوة الناتجة تشبه إلى حد ما خصائص الحالة السابقة تبدأ قصوية ثم هبوط متذبذب لكن هناك هبوط سريع للقوة في الأخير.

الشكل (6): الترس، يعطي كامل قوته في اللحظة الأولى للإشعال ثم هبوط مفاجئ إلى حدود قيمة معينة ليستمر على نفس الوتيرة طيلة مدة الاحتراق و شكل المنحنى هنا يسمى في الرياضيات بالشلجم و يفسر هذا كثرة مساحات الاحتراق.

10.3 معدل الاحتراق.

112
معدل الاحتراق يطلق عادة في علم الصواريخ على سرعة احتراق الوقود أو كمية الوقود المحترقة خلال وحدة الزمن و عادة ما تكون وحدتها بالمليمتر على الثانية، وهو عامل يتعلق بمكونات الوقود من جهة، و بالظروف الخارجية التي تتم فيها عملية الاحتراق. و على كل حال فإن التصميم الناجح لمحرك الصاروخ يقتضي معرفة معدل الاحتراق و سرعته. كما سبقت الإشارة فإن هناك عوامل تؤثر في معدل الاحتراق ومن بينها ضغط حجرة الاحتراق، الحرارة البدنية للوقود الصلب، سرعة خروج الغازات الناتجة و المارة على مساحة الاحتراق، الضغط الخارجي، التسارع الخطي أو الزاوي للمحرك هذه بعض الأمثلة و ليست على سبيل الحصر سنحاول مناقشة كل منها على حدة.

فيما يتعلق بالتأثير الذي يمارسه ضغط حجرة الاحتراق يمكن وصفه وفق علاقة رياضية تسمى قانون "سان روبر" و هي كما يلي:

\[r = aP_c^n \] (1.30)

حيث:

- \(r \): معدل الاحتراق
- \(a \): معامل الاحتراق
- \(P_c \): ضغط حجرة الاحتراق
- \(n \): رتبة قدر الضغط الخارجي.

فيما يخص القيم \(a \) و \(n \) يتم تحديدها عن طريق التجربة لأنها عوامل تتعلق بمكونات الوقود الصلب ومن أجل إعطاء مثال أكثر وضوحًا نجري حساب بسيط ونعطي بعض القيم العددية للعوامل التالية:

\[MPa = 4.3 \] و

\[a=5.609 \] و

\[n=0.35 \] و

ومنه:
114

إذن سرعة الاحتراق هنا تساوي 9.345 م/ث.

للحرارة دور فعال في زيادة سرعة أي تفاعل كيميائي ،
تفاعل الاحتراق هنا يتأثر بالحرارة البدنية للوقود الصلب
ومنه تزيد سرعة الاحتراق بشكل طردي مع ارتفاع الحرارة، ولابد من الأخذ بعين الاعتبار لهذا العامل
خصوصا عندما تكون درجة الحرارة المحيطة منخفضة
في فصل الشتاء مثلا أو في المناطق الجليدية.

أثناء الاحتراق يتم إنتاج غاز يمر ببطبيعة الحال بجوار
مناطق الاحتراق وهو ما يزيد كذلك من سرعة التفاعل و
كما كانت سرعة الغاز كبيرة كلما زادت سرعة التفاعل، و
الغاز هنا يلعب دور الحاثي ، أو ما يسمى الاحتراق ألحثي.
في بعض الظروف الخاصة بمكونات الوقود الصلب و
ضغط حجرة الاحتراق قد يلعب هذا الغاز دور المثبط أي
ينقص من سرعة الاحتراق.

وفي حقيقة الأمر يمكن الإنقاص من التأثير الغازي على
سرعة الاحتراق عن طريق الزيادة في النسبة بين مقطع
الحنجرة و مقطع الفوهة.

أثناء اشغال المحرك تتناقص قيم الضغط بشكل
تدرجي انطلاقا من فوق إلى تحت ، غير أن قيمة
السرعة الغازية تسجل ارتفاعا تدريجا في الاتجاه
المعكس ، أي أن قيمة السرعة تناسب باضطراد
عكسي مع قيم الضغط على طول المحرك و هي
الوضعية المسئولة عن توليد قوة الدفع لدى المحرك و
يمكن تفسير هذا بطريقة أخرى : عندما تكون قيمة
السرعة قصوية فإن قيمة الضغط تكون دنوية و عندما
تكون السرعة دنوية أو منعدمة فان الضغط يكون في أقصى حالاته.

كما أن سرعة الاحتراق يمكن أن تتأثر بتسارع المحرك عندما يكون في حالة طيران و هذا التسارع قد يكون خطيا و قد يكون زاويا لان متجهة التسارع تشكل زاوية من °60 إلى °90 درجة على مساحة الاحتراق و هو ما يؤدي إلى إنقاص من قيمة الحبث الذي اشرنا إليه أعلاه.

في بعض الأحيان تكون هناك حاجة ماسة إلى تغيير معدل الاحتراق تبعا للشكل الهندسي لقاليلب الوقود الصلب، فمثلا إذا كان الأمر يتعلق بقاليلب مغلق (ليس له ثقب وسطي) بحيث يبدأ الاحتراق من الأسفل صعودا إلى فوق فإنه من الأفضل الرفع من معدل الاحتراق هنا لأن مساحته صغيرة نسبيا، و ذلك عن طريق استعمال مواد تكون مسحوقة أو مطحونة و مخلوطة جيدا و هذا بهدف الزيادة في سرعة الاحتراق لتعويض النقص الحاصل في مساحة الاحتراق.

كما أن هناك طرق متعددة لإيقاف معدل الاحتراق منها مثلا زيادة في حجم حبيبات المؤكسد و المختزل، أو الإنقاص من النسبة المئوية للمختزل، كما يمكن إضافة بعض المحفزات أو المثبطات داخل تركيبة الوقود، أو تشغيل المحرك في ظروف ضغطية متباينة، و كل هذه العوامل تتم كما يلي:

- يتعلق تأثير حجم الحبيبات على معدل الاحتراق بنوعية المؤكسد، فالوقود الذي يستعمل فيه بيركلورات الأمونيوم على شكل حبيبات كبيرة تتناقص سرعة احتراقه بشكل ملحوظ.
الوقود الصلب: إن اغلب أنواع الوقود الصلب تتأثر فيه سرعة الاحتراق بنسبة المؤكسد/المختزل و لكن لا ينصح عادة بتغيير النسبة التي يكون فيها أداء المحرك جيد من أجل تغيير سرعة الاحتراق.

إن أحسن وسيلة لزيادة سرعة الاحتراق لتحقيق الأهداف المتوخاة هي إضافة محفزات كيماوية أو فيزيائية إلى مكونات الوقود الصلب تضاف بكميات قليلة. هناك أيضا المثبطات التي تنقص من سرعة الاحتراق.

بالنسبة للوقود الخاضع لقانون "سان روبر" يجب تصميم محرك يكون فيه ضغط الحجرة دنويا لكي يتم إتقان سرعة الاحتراق. ولكن هذا الإجراء يؤدي إلى إتقان من مردودية المحرك من حيث النبض الخاص والنبض الكلي.

معدل إنتاج المواد

يقصد به عادة كمية المخلفات التي تظهر داخل غرفة المحرك خلال مدة الاحتراق، و يتم التعبير عن صيغته الرياضية بدلالة سرعة التناقص في كمية الوقود الصلب خلال الزمن و ذلك وفق المعادلة التالية:

\[q = \rho_p A_b r\]
117

هواية الصواريخ

بحيث:

: معدل التكون على مساحة الوقود الصلب.
: كثافة الوقود الصلب.
: مساحة الاحتراق.
: معدل الاحتراق.

له من المهم ملاحظة أن المواد المتكونة أو المخلقة عن الاحتراق تتكون من مواد غازية و أخرى في طور التكاثف أو التصلب. و هذه الأخيرة لا تساهم في خلق أي ضغط في حجرة الاحتراق و لكنها تساهم . بفعل سرعتها و كتلتها، في خلق قوة الدفع حسب القانون الثالث لنيوتن.

12.3 ضغط الحجرة

من خلال المنحنى الخاص بضغط حجرة الاحتراق يتبين أن هناك طورين تمر منها الحجرة أثناء عملية الاحتراق: الطور الأول يبدأ منذ تشغيل المحرك حيث يبدأ الضغط في الارتفاع إلى أن يصل مرحلة قصوية، ثم يستمر على نفس الوتيرة إلى أن ينتهي الوقود الصلب. ثم تسمى مرحلة الاستقرار، ثم يبدأ الضغط في الهبوط إلى أن يعود كما كان في السابق و هاتين المرحلة الأولى و الثالثة تسميان مرحلة الانتقال.

و في واقع الأمر هناك عوامل كثيرة تساهم في تشكيل المنحنى الخاص بالضغط داخل حجرة الاحتراق و على رأسها الشكل الهندسي لقوالب الوقود الصلب كما اشترنا إلى ذلك سابقا، ثم هناك الشكل الخاص بالحنجرة و شدة الصقل و النعومة التي تتميز بها الحنجرة بصفة عامة.
13.3 مراحل الصاروخ

يتم بناء الصواريخ ذات مراحل متعددة لهدف بلوغ مسافات بعيدة بتكلفة أقل، بحيث يتم تركيب عدة مراحل بعضها فوق بعض و تكون كل مرحلة سفلى قادرة على إعطاء قوة دفع كافية لحمل كل المراحل التي فوقها، و عند نفاد الوقود منها يتم فصلها، ثم تشغيل المرحلة التي فوقها، و تتكون كل مرحلة من خزان الوقود و غرفة احتراق، يتم فصلها جميعاً كما قلنا.

يتم معالجة الصاروخ ذو المراحل المتعددة بنفس طريقة معالجة الصاروخ ذو المرحلة الواحدة و خصوصا ما يتعلق بمعادلة السرعة بحيث يتم تطبيقها على كل مرحلة على حدة بحيث تزيد سرعة الصاروخ عند فصل كل مرحلة بمقدار ∆Vi وهو مقدار السرعة الإضافية التي يحققها الصاروخ:

\[
\Delta V_i = c_i \ln \left(\frac{m_{oi}}{m_{fi}} \right)
\]

حيث:

- السرعة المرحلية التي يسير بها الصاروخ: \(v_i \)
- سرعة خروج الغاز المرحلية: \(c_i \)
- اللوغاريتم النيبيري: \(\ln \)
- كتلة الصاروخ المرحلية: \(m_{oi} \)
- كتلة الصاروخ قبل انفصال المرحلة السابقة: \(m_{fi} \)

كما تجب الإشارة إلى أن كتلة مرحلة ما يقصد بها كتلة جميع المراحل التي فوقها، و السرعة الكلية للصاروخ هي مجموع سرعات كل مرحلة على حدة و تكون معادلة السرعة الكلية كما يلي:

\[
\Delta V_{total} = \sum_{i=1}^{n} \Delta V_i
\]
و على كل حال فإن المرحلة السفلى يجب أن تكون أقوى من تلك التي فوق. المرحلة العلوية تكون أصغر حجماً وأخف وزناً من التي تحتها. كما أن المراحل المتساوية يجب أن تعطي سرعات متقاربة.

الفصل 4
4. ديناميكية طيران الصاروخ.

مما لا شك فيه أن توازن الصاروخ عند طيرانه مسألة حاسمة في نجاحه للوصول إلى هدفه (بغض النظر عن طبيعته) ، و لتحقيق هذا الغرض يجب التحكم في عنصرين أساسيين وهما: مركز الثقل \((CG)\) و مركز الضغط \((CP)\).

4.1 مركز الثقل:

يتم تحديد مركز الثقل لجسم ما عادة عن طريق تعليقه من المكان الذي يكون فيه المركز الثقل كما هو ملاحظ فانه
غالباً ما يكون في وسط المنطقة الخلفية للصاروخ، و ذلك لكون المحرك وما يحتويه من مواد يشكل اغلب وزن الصاروخ وخصوصاً قبل عملية الانطلاق، لأن بعد عملية الانطلاق تبدأ مواد الوقود الصلب في الاحتراق و من ثم التناقص لكي ينزح مركز الثقل الصاروخي قليلاً نحو الوسط عندما تحتفظ كتلة الوقود الصلب كلية بفعل الاحتراق.

2.4 مركز الضغط:

أما مركز الضغط فيقصد به عادة النقطة التي تتساوى عندها القوة التي يطبقها التيار الهوائي على رأس الصاروخ مع القوة التي يسلطها على الأجنحة أثناء طيرانه، ومكان هذه النقطة متغير و ذلك حسب الزاوية التي يشكلها ورود التيار الهوائي مع خط مسار الصاروخ، و تجد الإشارة إلى أن مكان هذه النقطة يتواجد قرب الأجنحة نظراً لمساحتهم الكبيرة مقارنة مع قطر الصاروخ.

أثناء تصميم الصاروخ تجب مراعاة أن تكون نقطة مركز الضغط أسفل من نقطة مركز الثقل ولا فقد الصاروخ توازنه أثناء الطيران، و أقل مسافة فاصلة مسموح بها بينهما تكون مساوية لقطر الصاروخ وتسمى عادة بهامش الاستقرار (Stability Margin) كما قلنا فإن مركز الضغط يتغير صعوداً أو هبوطاً مع زاوية الورود التي يشكلها هبوب الرياح أثناء طيران الصاروخ، كما يتم تحديد مكان مركز الثقل ومركز الضغط باستعمال مجموعة من النماذج الرياضية والبرامج الحاسوبية، و تبقى معادلات جيم بارومان(1).
من أشهر الصيغ الرياضية التي يتم اعتمادها في هذا الباب و ان كانت لا تأخذ بعين الاعتبار زاوية الرياح الواردة التي تكون أكبر من الصفر.

خلال الصفحات التالية تستعرض مجموع هذه معادلات و كيفية تحويل أبعاد مختلف أجزاء الصاروخ إلى عوامل داخلها.

سنعتمد رسمًا تخطيطيًا لصاروخ و نقوم بتعين اسم لكل جزء منه، مثل الأجنحة ، الهيكل ، الرأس المخروطي ، الخ...
في البداية

هواية الصواريخ

في البداية
هواية الصواريخ

طول المخروط الرأسي: L_n
قطر قاعدة المخروط الرأسي: d
قطر القاعدة الكبرى لمسورة التوصيل: d_f
قطر القاعدة الصغرى لمسورة التوصيل: d_r
طول مسورة التوصيل: L_t
مسافة بين الرأس المخروطي ومسورة التوصيل: X_p
ضلع الأكبر للجناح: C_r
ضلع الأصغر للجناح: C_t
قاعدة الجناح: S
وتر نصف الجناح: L_f
نصف قطر الهيكل السفلي للصاروخ: R
مسافة الفرق بين الارتفاع الأكبر والأصغر: X_r
مسافة بين الرأس والجناح: X_b
عدد الأجنحة: N

3.4 صيغ المخروط

$C_n^n = 2$

بالنسبة لرأس مخروطي:
$X_n = 0.666 L_n$

رأس باربولي:
$X_n = 0.466 L_n$
4.4 صيغ ماسورة التوصيل المخروطية:

معامل الضغط:

\[
(C_N)_T = 2 \left[\left(\frac{d_R}{d} \right)^2 - \left(\frac{d_F}{d} \right)^2 \right]
\]

مسافة مركز الضغط الخاصة بالمخروط:

\[
X_T = X_p + \frac{L_T}{3} \left[1 + \frac{1 - \frac{d_F}{d_R}}{1 - \left(\frac{d_F}{d_R} \right)^2} \right]
\]
5.4 صيغ الأجنحة:

معامل الضغط:
CN

مسافة مركز الضغط الخاصة بالأجنحة:
XF

\[
(C_N)_F = \left[1 + \frac{R}{S+R} \right] \frac{4N \left(\frac{S}{d} \right)^2}{\left[1 + \sqrt{1 + \left(\frac{2L_F}{C_R + C_T} \right)^2} \right]}
\]

\[
X_F = X_B + \frac{X_R}{3} \left(\frac{C_R + 2C_T}{C_R + C_T} \right) + \frac{1}{6} \left[\left(C_R + C_T \right) - \frac{(C_R C_T)}{(C_R + C_T)} \right]
\]

6.4 تحديد مركز الضغط:

يتم جمع المعاملات التي تم حسابها كما يلي:

\[(C_N)_R = (C_N)_N + (C_N)_T + (C_N)_F\]

ثم حساب مسافة مركز الضغط الكلي انطلاقاً من الرأس.

\[
\bar{X} = \frac{(C_N)_N X_N + (C_N)_T X_T + (C_N)_F X_F}{(C_N)_R}
\]

كما قلنا سابقاً أن مركز الضغط يتغير وفق زاوية ورود التيار الهوائي على جسم الصاروخ أثناء طيرانه، و زاوية الورود تكون من الصفر درجة إلى 90 درجة، كما تمت الإشارة إليه سابقاً فان
هامش الاستقرار هو المسافة الفاصلة بين مركز الثقل ومركز الضغط عند زاوية ورود هوائي منعدمة، إنها المسافة التي يمكن لمركز الضغط أن ينتقل فيها إلى الأمام قبل أن يفقد الصاروخ توازنه بفعل زيادة زاوية الورود الهوائي، و يمكن قياسه بمضاعفات قطر هيكل الصاروخ.

تختلف الصواريخ في ما بينها في الزاوية القصوية التي يرد بها التيار الهوائي و التي يستمر عندها كل صاروخ محاً فضاً على حالة الاستقرار قبل أن يفقد توازنه و قيمة هذه الزاوية تتحدد عندما يتطابق مركز الضغط مع مركز الكتلة، و هامش الاستقرار يمكن تحديده بزاوية الورود قبل أن يفقد الصاروخ استقراره كما قلنا، و يمكن تسميته هنا ب: "هامش الاستقرار الزاوي"

\[
\text{angular stability margin}
\]

вая زاوية الورود كما أسلفنا هي الزاوية التي يشكلها التيار الهوائي مع محور الاتجاه الرأسي للصاروخ، فعندما يكون الجو هادئ، يعني أن سرعة الهواء تكون تقريبا منعدمة، فإن التيار الهوائي الوحيد الذي يمارس تأثيره على جسم الصاروخ هو الهواء الناتج عن حركة الصاروخ نفسه وبالتالي تكون زاوية الورود هنا زاوية منعدمة لأنها موازية لمحور حركة الصاروخ.

عندما تكون هناك رياح سريعة أو تيار هوائي سريع متعامد مع سرعة الصاروخ فإن النتيجة تكون متجهة مركبة تنطلق من مؤخرة متجهة الهواء إلى مقدمة
متجهة سرعة الصاروخ على شكل مثلث قائم الزاوية عند رأس الصاروخ كما هو مبين في الشكل فوقه.

يمكن حساب المتجهة الناتجة عن طريق استعمال قواعد الهندسة مثل مبرهنة فيثاغورس، أو استعمال الحساب المثلثي لتحديد زاوية الورود كما يلي: ضل تمام الزاوية يساوي خارج قسمة متجهة الهواء على متجهة حركة الصاروخ، و صيغته الرياضية:

\[
\tan \left(\frac{W_w}{V_R} \right)
\]

عندما يتعلق الأمر بإطلاق صاروخ في اتجاه عمودي فإن حساب زاوية الورود يكون سبئا، وذلك عن طريق قسمة سرعة حركة الهواء على سرعة الصاروخ، فمثلا إذا كانت سرعة الهواء تساوي سرعة الصاروخ فإن الخارج القسمة يكون واحد و منه تكون الزاوية تساوى 45 درجة.

إذا كانت سرعة الصاروخ مضاعفة لسرعة الهواء فإن خارج القسمة الأولي على الثانية يكون 0.5 ومنه تكون زاوية الورود هي 26.6 درجة.

7.4 تأثير الرياح على استقرار الصاروخ

إذا كانت زاوية ورود الرياح على الصاروخ أكثر من هامش الاستقرار الزاوي فإن الصاروخ قد يفقد توازنه عند مغادرته لمنصة الإطلاق، ماعدا إذا كان ذو عزم قصور دوراني و تسارع مثاليين فانه في هذه الحالة قد يبدي سرعة تجعله يستعيد توازنه قبل أن يتخذ مسارا أفقيا و عزم القصور الدوراني يقصد بها، عادة في فيزياء الحركة، رد الفعل الذي تبيه الأجسام و هي في حالة دوران إذا ما تعرضت لتأثير خارجي، قد تسبب جهد سرعة الدوران و إتجاهه، و في مجال الصواريخ فإن عزم القصور هنا يكون طوليا.
هواية الصواريخ

إلي هنا نكون قد انتهينا من فصول الكتاب بحمد الله والسلام
عليكم ورحمة الله...

129